terms did not contribute significantly. Similarly, for the lower bound in the table, we
used only the first two terms of the series in the lower bound in (7). For each \(p \), we
 truncated the decimal expansion when the last decimal digit for the upper bound of
\(\pi_p \) starts to differ from the last decimal digit for the lower bound of \(\pi_p \). Table 1
motivated the title of this note, since the \(\pi_p \)'s "started" and "ended" at 4.

Questions We end with several questions for possible undergraduate research.

1. For what value of \(p \geq 1 \) is \(\pi_p \) a minimum?
2. Does there exist \(p \) such that \(\pi_p = 3 \)? If so, find that \(p \).
3. Does there exist \(p \neq 1 \) or \(p \neq \infty \) for which \(\pi_p \) is rational?

Acknowledgment. The authors would like to thank the referees for their valuable suggestions.

REFERENCES

 1974.

\[
\text{Proof Without Words: } \frac{1}{4} + \left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^3 + \cdots = \frac{1}{3}.
\]

—Rick Mabry

Louisiana State University in Shreveport
Shreveport, LA 71115-2399