A New Elementary Proof of Stirling’s Formula

C. L. FRENZEN
Naval Postgraduate School
Monterey, CA 93943-5100

If \(n \) is a positive integer, the ratio of the \((k + 1)\)st term to the \(k \)th term in the power series

\[
e^n = 1 + n + \frac{n^2}{2!} + \cdots
\]

is \(n/k \). Thus, the sequence of terms increases as long as \(k < n \) and decreases when \(k > n \). The \(n \)th and \((n + 1)\)st terms have the same magnitude, \(n^n/n! \), and this is the largest magnitude possible for any term in the series in (1). What is the behavior of the ratio of \(e^n \) to the largest term in its power series as \(n \to \infty \)? This question is answered by Stirling’s formula, usually written in the form

\[
n! \sim n^n e^{-n} \sqrt{2\pi n} \quad (n \to \infty).
\]

Equation (2) means that

\[
\lim_{n \to \infty} \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = 1.
\]

More generally, \(f \) is said to be asymptotic to \(g \) as \(n \to \infty \), written \(f(n) \sim g(n) \) \((n \to \infty) \), if

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1.
\]

To answer the question above, we can write (2) as

\[
e^n \frac{n!}{n^n} \sim \sqrt{2\pi n} \quad (n \to \infty).
\]

Stirling’s formula appears in many different disciplines, from algorithm analysis to statistical mechanics. Many derivations of it have been given. See, for example, [1], [2], and [3]. In this note we present a new elementary proof of (2); on the way we will see that the two largest terms in the power series for \(e^n \) asymptotically separate its sum into equal parts as \(n \to \infty \). We begin with the power series for \(e^n \) in (1) and pare it down to a point where we can conclude (3). The proof requires little beyond first-year calculus. More specifically, it requires the following three results:

\[
e^x > 1 + x, \quad (x \neq 0).
\]

This is easily proved by noting that

\[
\int_0^x (1 - e^{-t}) \, dt > 0, \quad x \neq 0.
\]

If \(x > -1 \), \(x \neq 0 \), and \(m > 1 \) is an integer, then

\[
(1 + x)^m > 1 + mx.
\]
This result, often called Bernoulli’s inequality, is proved easily by induction. The evaluation of the definite integral
\[\int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}, \] (6)
not quite within reach of most first-year calculus students, can be performed in the standard way by considering an iterated double integral and changing to polar coordinates (see, for example, [1, p. 128, Exercise 10]).

For \(n \geq 1 \), the terms in the power series for \(e^n \) in (1) are of two types: those of the form \(n^{n+k}/(n+k)! \) with \(k \geq 0 \) and those of the form \(n^{n-k-1}/(n-k-1)! \) with \(0 \leq k \leq n-1 \). When \(k = 0 \) each of these expressions has magnitude \(n^n/n! \). To compare their magnitudes to \(n^n/n! \) when \(k > 0 \), we let
\[\frac{n^{n-k-1}}{(n-k-1)!} = \frac{n^n}{n!} \alpha_k \quad \frac{n^{n+k}}{(n+k)!} = \frac{n^n}{n!} \beta_k, \]
where
\[\alpha_k = \left(1 - \frac{0}{n}\right)\left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k}{n}\right) \] (7)
for \(0 \leq k \leq n-1 \), and
\[\beta_k = \frac{1}{\left(1 + \frac{0}{n}\right)\left(1 + \frac{1}{n}\right) \cdots \left(1 + \frac{k}{n}\right)} = \frac{1}{\left(1 - \frac{0}{n+0}\right)\left(1 - \frac{1}{n+1}\right) \cdots \left(1 - \frac{k}{n+k}\right)} \]
(8)
for \(0 \leq k < \infty \). We can then write
\[e^n \frac{n!}{n^n} = \sum_{k=0}^{n-1} \alpha_k + \sum_{k=0}^\infty \beta_k. \] (9)
Note that \(\alpha_k \leq \beta_k \leq 1 \) for \(0 \leq k \leq n-1 \), and that \(\alpha_k \) and \(\beta_k \) are both monotone decreasing functions of \(k \). Using (4) and (8), we can show that
\[\beta_k \leq e^{-\left(\frac{0}{n+0} + \frac{1}{n+1} \cdots + \frac{k}{n+k}\right)} \]
(10)
Now
\[\frac{0}{n+0} + \frac{1}{n+1} \cdots + \frac{k}{n+k} \geq 0 + 1 + \cdots + k \geq \frac{k^2}{2(n+k)}, \]
(11)
so that when \(k \geq n \) we have \((1/2)k^2/(n+k) \geq k/4\) and (10) and (11) imply
\[\sum_{k=n}^\infty \beta_k \leq \sum_{k=n}^\infty e^{-k/4} = e^{-n/4} \sum_{k=0}^\infty e^{-k/4}. \] (12)
On the other hand, when \(k \leq n \), we have \((1/2)k^2/(n+k) \geq k^2/4n\) and (10) and (11) imply
\[\alpha_k \leq \beta_k \leq e^{-k^2/4n}, \quad (0 \leq k \leq n-1). \] (13)
This suggests the existence of a \(k_n \) between 0 and \(n-1 \) beyond which \(\alpha_k \) and \(\beta_k \)
are asymptotically unimportant. To make this more precise, for $0 < \varepsilon < 1/2$ we define $k_n = \lfloor n^{(1/2) + \varepsilon} \rfloor$, the greatest integer less than or equal to $n^{(1/2) + \varepsilon}$. The integer k_n satisfies the inequalities

$$n^{(1/2) + \varepsilon} - 1 < k_n \leq n^{(1/2) + \varepsilon}.$$

We will see how to select ε to our advantage. For $k_n < k < n - 1$, (13) implies that

$$\alpha_k \leq \beta_k < \beta_{k_n + 1} < e^{-n^{2\varepsilon}/4}.$$

Summing these inequalities on k then yields

$$\sum_{k=k_n+1}^{n-1} \alpha_k \leq \sum_{k=k_n+1}^{n-1} \beta_k \leq ne^{-n^{2\varepsilon}/4}. \tag{14}$$

A combination of (9), (12), and (14) gives, upon letting $n \to \infty$,

$$e^n n^1/n^n \sim \sum_{k=0}^{k_n} \alpha_k + \sum_{k=0}^{k_n} \beta_k \quad (n \to \infty). \tag{15}$$

The next step is to determine the asymptotic behavior of the right side of (15). From (4) it follows that $1 - x \leq e^{-x} \leq 1/(1 + x)$ for $x \geq 0$, and using this in (7) and (8) yields

$$\alpha_k \leq e^{-k(k+1)/2n} \leq \beta_k, \quad (0 \leq k \leq k_n).$$

This in turn implies

$$\alpha_k \leq e^{-k^2/2n} \leq e^{k_n^2/2n} \beta_k, \quad (0 \leq k \leq k_n). \tag{16}$$

Now (7) and (8) also show that

$$\frac{\alpha_k}{\beta_k} = \left[1 - \left(\frac{0}{n} \right) ^2 \right] \left[1 - \left(\frac{1}{n} \right) ^2 \right] \cdots \left[1 - \left(\frac{k}{n} \right) ^2 \right]$$

$$\geq \left[1 - \left(\frac{k}{n} \right) ^2 \right] ^k$$

$$\geq 1 - \frac{k^3}{n^2}, \tag{17}$$

for $0 \leq k \leq k_n$, where (5) has been used to obtain the last inequality in (17). Since $\alpha_k \leq \beta_k$ for $0 \leq k \leq k_n$, (17) implies

$$\left[1 - \frac{k^3}{n^2} \right] \beta_k \leq \alpha_k \leq \beta_k \tag{18}$$

when $0 \leq k \leq k_n$. The inequalities in (16) and (18) can then be combined and summed from $k = 0$ to $k = k_n$ to give

$$\left[1 - \frac{k_n^3}{n^2} \right] \sum_{k=0}^{k_n} \beta_k \leq \sum_{k=0}^{k_n} \alpha_k \leq \sum_{k=0}^{k_n} e^{-k^2/2n} \leq e^{k_n^2/2n} \sum_{k=0}^{k_n} \beta_k. \tag{19}$$

Since $k_n/n \leq n^{(-1/2) + \varepsilon}$ and $k_n^3/n^2 \leq n^{(-1/2) + 3\varepsilon}$, if we now choose ε so that $0 < \varepsilon < 1/6$, then $k_n/n \to 0$ and $k_n^3/n^2 \to 0$ as $n \to \infty$. We divide each term in (19) by
\[\sum_{k=0}^{k_n} \alpha_k \sim \sum_{k=0}^{k_n} e^{-k^2/2n} \quad \text{and} \quad \sum_{k=0}^{k_n} \beta_k \sim \sum_{k=0}^{k_n} e^{-k^2/2n} \]
as \(n \to \infty \). Consequently (15) becomes
\[e^n \frac{n!}{n^n} \sim 2 \sum_{k=0}^{k_n} e^{-k^2/2n} \quad (n \to \infty). \] (20)
Together with (14) these equations imply that
\[e^n \frac{n!}{n^n} \sim 2 \sum_{k=0}^{n-1} \alpha_k \quad (n \to \infty). \] (21)
If we employ the definition of \(\alpha_k \) given in (7) and rearrange (21), we obtain
\[1 + \frac{n}{1!} + \frac{n^2}{2!} + \cdots + \frac{n^{n-1}}{(n-1)!} \sim \frac{e^n}{2} \quad (n \to \infty). \]
Thus we have the remarkable fact that the two largest terms in the power series for \(e^n \) asymptotically separate its sum into equal parts as \(n \to \infty \).
To estimate the sum on the right side of (20) asymptotically, note that the function \(f \) expressed by \(f(x) = e^{-x^2} \) is positive and monotonically decreasing on \([0, \infty)\). If we set \(h = 1/\sqrt{2n} \), it follows that
\[\int_h^{(k_n+1)h} f(x) \, dx \leq \sum_{k=1}^{k_n} hf(kh) \leq \int_0^{k_n h} f(x) \, dx. \]
Since \(k_n h \to \infty \) and \(h \to 0 \) as \(n \to \infty \), we let \(n \to \infty \) to obtain
\[\lim_{n \to \infty} \frac{1}{\sqrt{2n}} \sum_{k=1}^{k_n} e^{-k^2/2n} = \int_0^{\infty} e^{-x^2/2} \, dx, \]
or, using (6),
\[\sum_{k=1}^{k_n} e^{-k^2/2n} \sim \frac{\sqrt{2 \pi n}}{2} \quad (n \to \infty). \]
It is also clear that
\[\sum_{k=0}^{k_n} e^{-k^2/2n} \sim \frac{\sqrt{2 \pi n}}{2} \quad (n \to \infty), \] (22)
so that by combining (20) and (22) we obtain (3) and hence (2).

REFERENCES