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I. Introduction Our major goal in this paper is to use a variety of techniques
available to the advanced undergraduate in the study of the convergence and
divergence of a particular complex continued fraction. The material was actually
presented to an independent study group and touches upon several areas:

a) analysis—using the derivative to determine the convergence of an iterative
sequence;

b) algebra—the use of finitely generated groups in the study of the divergence of
periodic sequences;

¢) number theory—how counting functions can determine the size of certain
groups;

d) topology—changing the setting of a problem to one that easily lends itself to the
study of our problem; and

e) complex variables—using properties of Moebius transformations when examin-
ing the iterates of a function.

The problem before us is to determine those complex numbers ¢, for which the
continued fraction

o (1)

1+ —%
1+ -

converges. By considering iterates of the function

£2) = 1o @)

evaluated at zero; that is, by considering the sequence f.(0), f,(f.(0)) =
F2O0), £.L£.L£00)) =£20),..., £(0),..., it will be shown that the complex fraction
(1) converges for all complex numbers C except those on the real line less than
—1/4. We will do this in two ways; in Section II we will use techniques that
illustrate (a) and (e), and in Section III we will use techniques illustrating (b), (c),
and (d).

The earliest record of real continued fractions is contained in the works of Bombelli
and Cataldi [9, p. 1] and dates back to the latter half of the 1500s. However, it wasn’t
until the 1700s that a systematic treatment of continued fractions was presented by
Euler [7] in his book Introduction to Analysis of the Infinite. The first known result for
complex continued fractions, which includes the type we are examining, dates back to
Worpitzky [9, p. 10] in 1865. His theorem dealt with circular regions of convergence.
A more generalized statement of the problem, its different cases, and more complete
solutions were formalized around the early 1900s by Van Vleck [9, p. 10], Pringsheim
[9, p. 46], and others [9, p. 46]. We choose not to deal with the problem in its
complete generality for a number of reasons. First, it is not how mathematics is
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usually done. Generalizations follow from the special cases, and so it would be
misleading to the student to do otherwise. Second, generalizations often cloud the
picture. The essential ideas in the proof are often buried somewhere in the general-
ized argument. Third, it makes exploring other techniques of proof and applying them
to our setting more difficult.

In addition to the convergence problem, we will also consider what happens to
those c-values in (—o, —1/ 4), for which the iterates of f,(0) diverge. In this interval
we define for each k =2,3,..., a set Dy, which contains those values of ¢ for which
the sequence {f"(0)} has k convergent subsequences {f"**/(0)}, j=1,2,...,k, each
with a distinct limit. It will be shown that the D;’s have a finite number of elements
and that their union is dense on (—, —1/4). Major work in the divergence of
iterates was done by Julia and Fatou in the 1920s, and with the use of high-power
computers continues to be an open and exciting area of study in dynamical systems

(3], [5], [6].

IL. The derivative and iterates of f,(z) The techniques we use in the proofs of this
section are motivated by the paper of Baker and Rippon [2] in which the convergence
of a,a* a*,...,a€ C, is considered.

Tueorem 1. If f(0) converges as n — =, then
ceD={t*+t:Re(t) > —1/2}U{-1/4}.
Note that D =C\ (-, —1/ 4).

Proof. If ¢ =0, then f(0)=1 for all n. Hence, {f(0)} converges and ¢ € D.
Suppose ¢ # 0 and let w=1lim,_, f(0). Then w is a fixed point of f,(z), so
w=1/(1+cw). Letting t=cw we have w=1/(1+1) and ¢ =12+t Because
f.(z) is one-to-one and w # 0 is a fixed point, f*(0) # w for every n, and

. fcn+l(0)_w s fc(fcn(o)) _fc(w) _ _ —t
lim (W)— lim ( fc"(O)—w —fC(W)—m

Since {f'(0)} converges, it must be that | —¢/ (¢ + 1)| < 1. Otherwise, one can
show that there exists a A > 1 such that for n sufficiently large, |[f""*(0) —w| >
Alf(0) — wl, and this implies that the sequence does not converge to w. Therefore,
| —t/ (t+ D] <1, and this is equivalent to Re(t) > —1/ 2.

We now show that the assumption {f'(0)} converges implies that either Re(t) >
—1/2 or t=—1/2. Suppose to the contrary that Re(t)= —1/2 and Im(¢) # 0.
Then ¢ is real, and ¢ < —1/4. Since w is a fixed point of f.(z), f(w)=w=
1/ (1 + cw) and it follows that

n-—oo n-—o

cw?+w—1=0, (3)
which in turn implies

—1+vV1l+4c
WS )

Thus, w has a nonzero imaginary part. But because ¢ is real-valued, { f'(0)} must be
contained in R and so must its limit point, w. This is a contradiction. Hence, our
claim is established and the theorem follows.

In our proof the assumption of convergence of the iterates placed a bound less than
one on the magnitude of the derivative. Can we argue the result in the other
direction? The answer is yes and is the central idea in the proof of the converse of
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Theorem 1. We also take advantage of the following properties of Moebius transfor-
mations:

i) The composition of Moebius transformations is a Moebius transformation
(1, p. 77].

ii) A Moebius transformation has at most two fixed points, unless it is the identity
function [1, p. 78].

Tueorem 2. If c€D={t?+t: Re(t)> —1/2}U{—1/ 4}, then the sequence
{£fM0), n=1,2,3,... converges.

Proof. 1If ¢ = 0, then £*(0) =1 for all n, so the sequence converges. If c = —1/ 4,
then

1
1-1z

f(z) =

has one fixed point at z = 2. Consider the real-valued function

1
1—4x°

F(x)=

Clearly, F"(0) =£(0) for all n. Since F(x) is increasing on (—,4) we have that
F™(0) < F*(2) =2 for every n. In addition, F(0)=1<4/3=F2(0) and so F"(0) <
F"*1(0) for all n. Hence, the sequence {F"(0)} converges. Suppose A is the limit of
this bounded increasing sequence. This gives

A= lim fX1(0) = lim £,(£5(0)) =£,( lim f5(0)) =£.(1).

Since there is only one fixed point, we conclude A = 2. Therefore, the sequence
converges to the point A = 2.

Suppose ¢ # 0 and ¢ # —1/ 4. There is exactly one ¢ such that ¢ =¢*+¢ and
Re(t) > —1/ 2; hence f,(z) has two distinct fixed points at 1/ (1 +¢) and —(1/¢).
Let Q={z: 386 > 03> converges uniformly to 1/ (1 +¢), a constant function, on
Ny(2)}, where Ny(z) denotes an open disk about z of radius 8. Observe that ) is
open. Since w =1/ (1 +¢) is a fixed point and [f/(w)| =71 <1, one can find a § > 0
so that when z € Ny(w), |f)(z) —wl| = |f(z) — f{(w)| <7n"|z —w| <7n"8. It fol-
lows that f converges uniformly to w in Nj;(z). Thus, w=1/(1+¢)€Q and
obviously —(1/t) & Q.

Let g,(z) =(1—2)/cz be the inverse of f(z). Since the singularity of f,(z) is
—(1/¢), the singularity of f"*!(z), which is also a Moebius transformation, is
g"(—(1/ ¢)). We now show that

i g2 1) - -1

1:E;gc cl ™ t-
(We will need this result later.) Let ¢, = g”(—(1/ ¢)) for each n. Using (i) we can
express f(z) in the form

Fr(z) = A, + —or (5)

— >
z Cn—l

and since 1/ (1 +¢) and —1/t are fixed points of f, we have

1 1 1

n t Tyl ¢
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In addition,

|2/ ) = £/ Q+0)| =l(=t/ (1 +1)] > 0as n - .

If we use (5) in this last expression, then

-B

1
|? +Cn——1

n

1 .
(m‘cn—l) T+~ o

—>0as n— o,

This shows ¢, converges to —1/t as n — o,

We use this last result to argue that Q= C\{—(1/t)}. Let ¢ >0 be given and
consider K, = C\N.(—(1/ 1)), where the bar denotes closure. Since the sequence
{c,} converges to —(1/¢), {A,} and {B,} converge respectively to 1/ (1 +t) and 0 as
n — . So by choosing N > 0 such that |c, — (—=(1/t))| <&/ 2 for n > N, it follows
that for any z €K_, |z —¢,| > &/ 2 for n > N. From (5) and the above comments, we
conclude

1
fl(z) — 17| converges uniformly to 0 on K,,

and so K, Q. Upon letting € — 0, we see that O =C\{—(1/)}; consequently
0 € Q and {f(0)} converges.

The combination of Theorems 1 and 2 insures {f(0)} converges if, and only if,
ceD={t>+t:Re(t)> -1/2} U{-1/4}.

We now turn our attention to the sets Dy, k =2,3,... . Recall, D, is the set of real
numbers ¢ less than —1/ 4 for which the k subsequences, { fC"k”(O)}, i=12,...,k
as n — o, converge to distinct limits. We have the following result.

Tueorem 3. For each k = 2, D, is finite.

Proof. We first show that D, is empty. Suppose not, and let ¢ € D,. Then { f,2"(0)}
converges to a point w, which is a fixed point of f2(z). Since ¢ € R, {f2"(0)} C R,
and therefore, w must also be real-valued. But, upon inspection, w = f,*(w) implies
Equations (3) and (4). Thus, w has a nonzero imaginary part, which is a contradiction.
Therefore, D, is empty.

Since f¥(z) is a Moebius transformation, it has at most two fixed points. Now for
each ¢ in Dy, k > 2, {f(0)} has k convergent subsequences { fc"k ), j=12,...,k,
each having a distinct limit. These k limits are fixed points of £¥(z). By (ii), we must
have fck(z) =z. In the case that ¢ € D,,

f(z) = ——— =2, ¥z
1+ —

This simplifies to (¢ + 1)(cz%+z — 1) = 0 for all z. Since the second factor cannot be
0 for all z, it follows that ¢ = —1 and so D, ={—1}. In general, if ¢ € Dy, then
f¥(z) =2z for all z. Rewriting this as f,(f¥~'(z)) =z, using (5) on £} '(z), and the
expressions for A;_; and B, _,, one can show with a little bit of algebraic manipula-
tion that the equation f¥(z) =z for all z is equivalent to —c;_,(cz®>+2z—1) =0 for
all z, where ¢;,_,=g*"%(—1/¢). This implies that ¢, _, = 0. Thus, the set D, is
contained in the set of ¢ values that make the equation ¢, _, = 0 true. Since ¢;_, is a
rational function of c, there are only a finite number of solutions to this equation. So
D, is finite.
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FIGURE 1

We note that if ¢ is a root of the equation, ¢;_, =0, the sequences {f**/(0)},
j=0,1,...,k — 1 do not necessarily have k distinct limits.

III. Changing the setting The arguments used in Section II illustrate the power of
complex analysis, but they are not very efficient. We will show how changing the
setting of the problem results in a more concise proof of Theorem 2 and a more
precise statement and proof of Theorem 3. In addition, we will be able to show that
the union of the D,’s is dense on (—%, —1/ 4). Our approach is motivated by a study
of the work done by earlier mathematicians [9, p. 46-56] and more recently by [3, p.
1-48), [5, p. 1-60] and [6, p. 1-24, p. 5774, p. 75-106].

For each c =t*+1¢, Re(t)> —1/2,t+0, t # —1/2, f.(z) has exactly two fixed
points, 1/ (1 +¢) and —(1/¢). Let

z+%
T(z)=—7—: (6)
S
Then,
11
Ti(z) = L (7)

Set L (z) = Tf,T~'(z) = az, where @ = (1 +t)/ —t. Ficure 1 displays the relation-
ship among f,, T, and L,.

Note that 1/ (1 +¢), —(1/¢), and —(1/ ¢) are mapped under T(z) to the point at
infinity, zero, and —t/ (1 +t), respectively. Hence, instead of considering f,, its
iterates, and the parameter c-plane, we consider the linear map L, its iterates, and the
parameter a-plane. We display the relationship between the two parameters in Ficure
2. In the figure, c =t2+1 is a one-to-one analytic map from {¢: Re(¢t)> —1/2}
onto C\{x:x€Randx < —1/4}, and a =(1 +¢)/ —t is a one-to-one analytic map
of {t: Re(t) > —1/ 2}\{0} onto the exterior of the unit disk. Thus, the relationship
between a and ¢ given by

1 1
(@)= 51 (g7 1)l > 1.

is one-to-one and analytic. (Complex analysts will immediately observe that c(a) is the
extremal function for the Bieberbach Conjecture [8, p. 189].) When Re(t)= —1/ 2,
c=t>+tmaps —1/2+iyand —1/2 —iy to —1/4 —y?>, a point on the real line
less than or equal to —1/4. Also, « =(1+¢)/ —t maps the line Re(¢t)= —1/2
one-to-one and onto {|z| = 1}\ {—1}. It follows that c(a) is a continuous, one-to-one
map from the upper half (or lower half) of the unit circle onto the real numbers less
than —1/4.
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We now consider the iterates of L (z). If ¢ =t®+t where Re(t) > —1/2 and
t+#0, then |a| =[(1+¢t)/ —t| > 1. Hence, for all z&€ C\{0}, L’.(z) =a"z con-
verges to the point at infinity as n — . Since f,=T 'L,T, we have for all
z2€ C\{—(1/ 1)}, f(z) converges to 1/(1+1t) as n— . Since 0 # —(1/t), the
sequence {f(0)} converges. The cases where t= —1/2 and t =0 are handled as
before. Thus, we have a concise proof of Theorem 2.

Recall that the singularities of f(z), n=1,2,..., are the iterates of —(1/¢)
under the inverse map g.(z). Under T, this corresponds to considering the iterates of
—t/ (1 +1t) under the map L,'(z)=(1/ a)z. Clearly, these iterates converge to
zero, and so the iterates of g/(—(1/¢)), n=1,2,..., converge to —(1/t).

In the case ¢ =t®+t where Re(t)= —1/2 and t# —1/2, ¢ is a point on the
real line less than —1/4 and |a| = [(1 +¢)/ —t| = 1. We would like to determine
those @ on the unit disk such that c(a) € D,. If k> 3, then we have f¥(z) =z as
argued earlier and hence LX(z)=z. Thus a*=1 and so « is a kth root of unity.
Under complex multiplication the kth roots of unity form a cyclic group with
generator a,=¢'@"/%, the principal kth root of unity. We denote this group by
Gi(ag). Using T and the definition of Dy, it follows that if c¢(a) € Dy, then the k
subsequences {L"**((1+¢)/ —t)} j=1,2,...,k, each have distinct limits, which
respectively are L(a) = a?, L¥a) =a?®,..., L*(a) = a. This implies that & must be a
generator of G, (a,). We know [4, p. 71] that a = &) is a generator of G(a,) if, and
only if, (s,k) = 1. For a given k the number of such generators is ¢(k), where ¢ is
the Euler totient function [4, p. 146]. Finally, we note that if a is a generator of
Gi(ayp), then its inverse, which in this setting is the conjugate of «, is also a generator
of G, (a,). Hence, there is an even number of generators of G,(a,), half of which are
in the upper half-circle, the other half on the lower half-circle. We conclude that the
generators of G(a,) lying in the upper half-circle are mapped by c(a) one-to-one
and onto Dy, and so the number of elements in D, is given by ¢(k)/ 2. We have a
more precise proof of Theorem 3 that leads to the following result.

Tueorewm 4. The union of the D)’s is dense on (—o, —1/ 4).

Proof. Suppose 8 >0 and let a =¢ be any point in the upper half of the unit
circle. Since the rationals are dense in R, there exists a rational number m/ k,
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(m, k) =1, such that (8 —8)/ 27 <m/ k <(6 + 8)/ 2. This implies that ¢’®™7/*)
lies on the arc connecting ¢’®~® and ¢*®*® taken in the counterclockwise direction.
Since ¢!@™™/F) js a kth root of unity and a generator of Gi(a,), we have that
U5%._ {a such that a is a generator of G;(a,)} is dense on the unit circle.

Now let £ >0 and ¢ be such that the interval (¢ — ¢, ¢ + &) is contained in the
interval (—o, —1/4). Since c(a) is a one-to-one, continuous map of the upper
half-circle onto the half-line, there exists an @ = ¢*® and 8 > 0 such that ¢(a) = ¢, and
the arc from ¢/®~® to ¢*®*® js mapped under c(a) into the interval (¢ — ¢, ¢ + &).
Since we can find on the arc a kth root of unity that is a generator of the kth roots of
unity, denoted a,, its image, c(a;), is a point of D in the interval. Hence, our
theorem is established.

REFERENCES

1. Lars V. Ahlfors, Complex Analysis, 3rd edition, McGraw Hill Book Co., New York, 1979.

2. LN. Baker and P. J. Rippon, A note on complex iteration, Amer. Math. Monthly, August-September,
1985, 501-504.

3. Alan F. Beardon, Iteration of Rational Functions, Springer-Verlag New York, 1991.

4. Elwyn H. Davis, Introductory Modern Algebra, Charles E. Merrill Publishing Co. / Bell and Howell
Company, Columbus, OH, 1974.

5. Robert L. Devaney, Chaotic Dynamical Systems, 2nd edition, Addison-Wesley Publishing Co., Inc.,
Reading, MA, 1989.

6. Robert L. Devaney and Linda Keen, Chaos and Fractals, The Mathematics Behind the Computer
Graphics, Proceedings of Symposia in Applied Mathematics, Volume 39, Amer. Math. Society, 1989.

7. Leonard Euler, Introduction to Analysis of the Infinite, Book 1, Springer-Verlag New York, 1988.

8. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translations of Mathematical
Monographs, Vol. 26, Amer. Math. Society, 1969.

9. William B. Jones and W. J. Thron, Continued fractions, analytic theory and applications, Encyclopedia
of Mathematics and Its Applications, Volume 11, Addison-Wesley Publishing Co., Reading, MA, 1980.

10. H. S. Wall, Analytic Theory of Continued Fractions, Chelsea Publishing Co., Bronx, NY, 1967.

Two Mathematikers at the Gateway Arch in St. Louis

“Cosh, it’s beautiful!”

“Yessiree. 1/2 (e* + e~*), for sure!”
-

N\

—LESTER H. LANGE
308 EscaLoNA DRIVE
v CarrToLa, CA 95010



	Cover Page
	Article Contents
	p.202
	p.203
	p.204
	p.205
	p.206
	p.207
	p.208

	Issue Table of Contents
	Mathematics Magazine, Vol. 68, No. 3, Jun., 1995
	Front Matter [pp.i-ii]
	Ideas of Calculus in Islam and India [pp.163-174]
	Selling Primes [pp.175-182]
	Derivatives of Noninteger Order [pp.183-192]
	Proof without Words: The Trapezoidal Rule (for Increasing Functions) [p.192]
	Notes
	Copulas, Characterization, Correlation, and Counterexamples [pp.193-198]
	An Amazing Identity of Ramanujan [pp.199-201]
	Convergence of Complex Continued Fractions [pp.202-208]
	Two Mathematikers at the Gateway Arch in St. Louis [p.208]
	The Cardinality of Sets of Functions [pp.209-211]
	Oscillating Sawtooth Functions [pp.211-213]
	The Generalized Fermat's Point [pp.214-215]
	An Overlooked Series for the Elliptic Perimeter [pp.216-220]
	Dropping Scores [pp.220-223]

	Problems [pp.224-232]
	Reviews [pp.233-236]
	News and Letters [pp.237-239]
	Back Matter





