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False Conjecture Is True ne-Way

ZACHARY M. FRANCO

Butler University
Indianapolis, IN 46208

Introduction In [2], Barry Kissane asks: How should a positive integer be parti-
tioned into positive real summands whose product is as large as possible? For
example, 13=5.5+ 7.5, whose product is 5.5 X 7.5=41.25, but 13=5+4+4,
whose product 5 X 4 X 4 =80 is larger. If two summands differ, replacing them by
their average will increase the product. Thus the product can be maximal only if the
summands are equal. But how many summands should there be? Kissane conjectures:
The maximum product occurs when all summands are equal and their common value
is as close as possible to e. More precisely:

n
CONJECTURE. For every positive integer k, the function f(n) = (’i) , where n is a

n

positive integer, is maximized when n minimizes |Z<n- —e |

While the conjecture holds for k < 52, it fails for k = 53:

53 .

but
531" . sy
( 19) =~ 2.91691 X 10° > 291687 X 10° ~ (%) .

In [3], Eugene Krause notes the instructional value of such a “collector’s item—a
nontrivial proposition about positive integers that is true fifty-two times in a row
before it fails.” Indeed, the conjecture holds for most values of k. The only
exceptions less than 10,000 are k = 53, 246, 439, and 632. I discovered that switching
the n and the e inside the absolute value sign produces a (true) theorem:

e . _ (k)" .
THEOREM. For every positive integer k, the function f(n)= (;) , where n is a
positive integer, is maximized when n minimizes ’é -n ’

We will prove the theorem and then use it to study some counterexamples to the
false conjecture. We will use the following facts about continued fractions (for proofs

see, e.g., [1, [4], [5].

Continued fractions Let a,, a,, a,, ... be positive integers. The continued fraction
formed by the a;, written in shorthand as [a; a;, ay, a,, ..., a,]is the rational number
1
ag + 1 5
@t
Poayt e+ 1

each numerator is 1. The a; are called partial quotients. For example,

1 43
1 30"

24+ ——
3+1

[1:2,3,4] =1+

[5 [
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If d <r, the rational number [a; a,, a,, as, ..., a,] is called the d® convergent to the

continued fraction [ay; a,, ay, as, ..., a,]. For example, [1;1,1,1,1,..., 1] has conver-
Rl Rl R AL S

gents r

2 3 5 8
=1 [L1]=1, [LL1l=5, [LLL1]= 3, [LLL L] =5, ..
As one might guess from these results, the d™ convergent satisfies

F,
[Lriiy. ] =g,
‘—7——/ d+1
where F, is the d™ Fibonacci number. An infinite continued fraction

[ag; a1, a4, as,...]is defined as the limit of its convergents. For example,

Fi., 1+4v5
1;1,1,...]= 1 £ = .
[ L

The continued fraction expansion of any positive number z can be obtained by
setting a, =|z] (where | z] is the greatest integer not exceeding z) and iterating the

. _ 1
function f(t) = I
and the expansion is complete. We will use the following properties of continued
fractions in what follows. We assume throughout that x is a given irrational number

and x = [ay; 4, ay, a,, -++ ] is its continued fraction.

If z is rational, the iteration eventually produces an integer,

Fact 1 The convergents %=[a0;a1, ay,as,...,a,] to the continued fraction

[ay; a1, a4, as,...] can be computed for r > 0 by the recursive formula
( Pr+1 > qr+1) = ar+1( pr’ qr) + ( pr—l ’ qr—l)
with initial conditions (p_;, g_;) = (1,0) and (p,, q,) = (ay, 1.
Fact 2 ¢=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,...]. Using Fact 1 to compute the

first few convergents to e (see table below) we see by induction that p, is even and g,
is odd if and only if » =0 or r =2 (mod 6).

i o 1 2 3 4 5 6 7
P2 3 s 1 19 s 16 1%
q; 1 1 3 4 7 32 39 71

Fact 3 Let d,,, denote [a,,,;a,,5,a,,3,...]. Then

p_(=D) 1

2 ! qr—1 °
qr qr Aril + q—
-

x —

It follows that the convergents p,/q, lie alternately above and below «.

Fact 4 If ‘ x— gl < 51—2, for relatively prime integers p and g, then p/q is a
q
convergent to the continued fraction of x.
We now use these facts to study rational approximations of e.

LEMMA 1. Let p,/q, be the rth convergent to the continued fraction for e. If r=0
or r=2 (mod 6), then

q.l9.¢ —p. 2%.
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Proof. By Fact 3, it suffices to show a),; + q;'r' < 16—3. If r=6j, then
1 7

Gj+25%6"

do=[L4j+2,1,1,...]<1+

SO

a;+1+qq <%+1—%3

If r=6j+2, then d},; =[1;1,4j+4,1,...]1<2. By Facts 1 and 2,
qr—l _ qr—l ]- 1

= < - <=,
q- (4j+2)q,-1+tq,_, 4+t276

SO

9. 13
a.,+ qu <% n

t+1
t+ 1
LEMMA 2. Forall t >0, (T)se(t+ E)'

Proof. If h(x) is a concave function, integrable on [a, b], then Jensen’s inequality
for integrals gives h(ﬂ) > -b%a-fbh(x)dx. Take h(x)=Inx and [a,b]=

2
[t,¢+ 1] to get
ln(t+ 1) >(t+1)In(¢+1) —thne—1,
which is equivalent to the lemma. [ |

Proof of the Theorem Recall that f(n) = ( ) By examining the first derivative of
In f(n), we see that the maximal product occurs either at n = I l or at l ] + 1. Let

t= l ] Direct calculation verifies the theorem for k <71, so we may assume that

k> T1, or, equivalently, that ¢ > 27. If §> t+ 5 2 then |§ n’ is minimized when
n=t+ 1. By Lemma 2,
t+ l t+1
k>e(t+3)> (_—t—t)_——
which implies that f(t +1)> f(t) as desired.
Now suppose that £ > <t +5. Lets=t+3—-2 > 0. By Fact 2 and Lemma 3,

% <q.lg.e —p.| = (2t +1)|(2t + 1)e — 2k| =2e(2¢ + 1)s.

. 3 1
Since t > 27, we have 82m>27t and so k<(t+§ - 24t)e Dividing by
t+1,

1

+1-
k t+3 " 12¢+1
<e =¢|ll — ———|.
t+1 t+1 24t(t+ 1)

Taking logs and writing In(1 +z) as an alternating series gives

o0 k
<l+ln(l— 12 +1 )=1_2%( 12¢ +1 )

in 24t(t+1) o e\ 24t(t+1)

t+1
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Therefore,

k-1 k
tln(l+—i—)—ln k >t2( 1) l+z (_]._Q.L-i—_l_)
k=1

t+1 k\24t(t+1)

_ 8641° — 7308t — 17208¢ — 10367
4147263(¢ + 1)° '

The numerator has only one real root, at ¢ = 10.47, and is therefore positive since
t > 27. Thus f(t) > f(t + 1). [

Counterexamples to the conjecture A computer search found the first twelve
counterexamples to the conjecture: 53, 246, 439, 632, 12973, 62144, 111315, 160486,
209657, 258828, 7332553, 205052656.

In fact, there are infinitely many counterexamples Suppose k is a counterexample,
and let n be the integer that minimizes I— —el. Then e must lie between k and

2 k 2n+1
or between no1 and 7. If m <e < » then T > n(n+1)°

minimize l’i —nl, % is closer ton+1 than to n, whence 2% > 2n + 1. Multiplying
(211 + 1)
nZ+n

n+1
Since n does not

these last two 1nequahtles yields 4 > , a contradiction. Hence -kn-
2¢ > 2n —

>k 7 a(n- 1)

-1

In this case and 27]‘ <2n-— l, so k is a counterexample if and only if

2k < e
2n=1 " (9pn 1)

(1)

By Fact 3, the right-hand inequality in (1) is satisfied by each convergent p,/q, to
2n2_1 if r=0or r =2 (mod 6). By

Fact 3, the successive convergents must be alternately above and below e. Since
Po/qo =2/1 <e, we have p,/q, <e for all even r. Hence (1) holds for 2k = p, and
2n—1=gq,, where r=0 or r=2 (mod 6). This method produces inﬁnitely many
counterexamples of the form k=pg;/2 or k=pg;,,/2, for j=1,2,3,.... These
account for six of the first twelve counterexamples mentioned earlier:

e. By Fact 2, there are integers k and n with Z— =

J | 1 2 3
Pe;/2 53 12973 7332553
Pejra/2 632 258828 205052656
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