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Conclusion This method of enumerating sets certainly does not displace Cantor's 
classic technique, but it does show another, more concrete way to accomplish the task. 
Though we applied it only to Q and A, the method presented here can, in theory, be 
used to count any set X such that N c X (so that we may apply inclusion) for which a 
sufficiently clever function from X into N(n) for some n can be found. 
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Let us consider the following problem, which is a variant of problem 9 from the 2002 
American Invitational Mathematics Examination (AIME): 

PROBLEM. Harold, Tanya, and Ulysses paint a very long fence. Harold starts with 
the first picket and paints every hth picket; Tanya starts with the second picket and 
paints every tth picket; and Ulysses starts with the third picket and paints every uth 
picket. If every picket gets painted exactly once, find all possible triples (h, t, u). 

Solution: Label the pickets 1, 2, 3, and so on. Ulysses cannot paint picket 4 or else 
Ulysses paints all the pickets thereafter. Suppose Harold paints picket 4. Then Ulysses 
cannot paint picket 5, or else Harold and Ulysses both paint picket 7, so Tanya paints 
picket 5. Ulysses paints picket 6 and (h, t, u) = (3, 3, 3). On the other hand, suppose 
Tanya paints picket 4. Then Ulysses cannot paint picket 5, or else there is nothing 
left for Harold to paint, so Harold paints picket 5. Hence Ulysses paints picket 7 and 
(h, t , u) = (4, 2, 4). 

This problem really asks about how one can partition the set of integers into three 
arithmetic progressions. The second triple (4, 2, 4) is a bit more interesting than the 
first, since not all the differences are equal. In elementary number theory, arithmetic 
progressions are equivalently called residue classes of various moduli. In such a set- 
ting, the arithmetic progression a + km, k E Z is denoted by a (mod m). 

One can generalize the AIME problem and ask whether there exists a finite set 
of congruences, with all moduli distinct and greater than or equal to 2, that forms 
a partition of the set of integers. This turns out to be impossible [4]. Relaxing the 
assumption about partitioning the integers, one can look for finite sets of congruences 
such that every integer belongs to at least one of them. 

Our purpose in this note is to survey this topic and provide an elementary proof of 
the relationship between two well-known conjectures. 
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Erdlis's covering systems In 1849, A. de Polignac conjectured that any odd integer 
n > 3 can be expressed in the form 2k+p, where k is a nonnegative integer and p 
is either a prime or the integer 1 [6]. In 1950, Erd6s refuted this by proving that there 
exists an arithmetic progression, no term of which has the given form. 

To prove his assertion, Erd6s developed the concept of covering systems of con- 
gruences. A family of residue classes ai (mod ni) with < nr is called a 
covering system of congruences if every integer belongs to at least one of the residue 
classes, that is, every integer satisfies at least one of the congruences x = ai (mod ni). 

This is how ErdOs's proof worked: Consider the system of congruences (which 
can be shown to be a covering system): 0 (mod 2), 0 (mod 3), 1 (mod 4), 3 (mod 8), 
7 (mod 12), and 23 (mod 24) [2, 3]. Each of these congruences implies a correspond- 
ing congruence for certain powers of 2. For example, the congruence k 1 (mod 4) 
together with 24 1 (mod 5) imply that 2k -- 2 (mod 5). To see this, let k = 4n + 1 
and observe that 

2" 

By similar reasoning, if k is a nonnegative integer, then at least one of the fol- 
lowing congruences holds: 2k ---_ 1 (mod 3), 2k 7-- 1 (mod 7), 2k 2 (mod 5), 2k 
8 (mod 17), 2k 2' (mod 13), or 2k 223 (mod 241). 

Now consider the congruences 1 (mod 3), 1 (mod 7), 2 (mod 5), 8 (mod 17), 
27 (mod 13), and 223 (mod 241). Since the moduli are pairwise relatively prime, 
there are infinitely many integers that satisfy all the congruences, by virtue of the 
Chinese Remainder Theorem. Now, if an odd integer a satisfies all the congruences, 
then all the integers of the form 2k are divisible by one of the moduli 3, 7, 5, 17, 
13 or 241. It follows that 2k is not prime and therefore a does not have the form 
2k 

Another example of application of covering systems of congruences came from 
R. L. Graham [5]. His result is in a sense opposite to a well-known conjecture stat- 
ing that the Fibonacci sequence, defined by fo = 0, fi = 1, and for n > 0 fn+2 = 
fn+1 fn, contains infinitely many primes. Graham used covering systems to show 
that one can choose the initial relatively prime values fo and fi so that the correspond- 
ing sequence contains only composite integers. The smallest known choice is 

fo = 331636535998274737472200656430763 

and 

A = 1510028911088401971189590305498785. 

The major open problem in this topic is a conjecture of Erd6s, that for every c > 2 
there is a covering system of congruences with n1 > c and distinct moduli. This is 
known to be true for some values of c; the current record, held by Choi [1], is c = 20. 
If there is a covering system of congruences with distinct moduli, and n1 > c for every 
c > 2, then one would obtain the following result about arithmetic progressions: For 
every positive integer m there exists an arithmetic progression, no term of which is a 
sum of a power of two and an integer, having at most m prime factors [4]. 

Two other important conjectures are by Selfridge and Schinzel: 

SELFRIDGE CONJECTURE. There is no covering system of congruences with dis- 
tinct odd moduli. 

SCHINZEL CONJECTURE. In every covering system ai (mod ni) with 1 < i < r, 
there exists j such that ni 
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Schinzel has proved that Selfridge's conjecture implies the Schinzel conjecture us- 

ing the irreduciblity of certain polynomials [7]. We propose to prove this result using 
only elementary methods. 

Main result We begin with a definition. Let a, (mod n5) with 1 < s < r be a cover- 
ing system of congruences. Then it is a reduced covering system of congruences if no 
proper subset of the covering system of congruences is a covering system of congru- 
ences. 

THEOREM. The Selfridge conjecture implies the Schinzel conjecture. 

Proof Let us assume that the Selfridge conjecture holds, but the Schinzel conjec- 
ture does not. Then there is a reduced system of covering congruences, as (mod m,), 
such that mi t mi for all i j. Let mi = 0i, where Oi is odd for 1 < i < r. Let 
us also assume that the congruences have been numbered in such a way that if i < j 
then /3i < /3j. It follows from the Selfridge conjecture that or > 0. Obviously, all the 
numbers Oi are different. 

Now, if Oi > 3 for all i, then we would contradict the Selfridge conjecture since 
if ai (mod 20i 0i), and Vi (20i 0i), then x ai (mod 0i), and we would have 
a covering system with all odd moduli. Consequently, if ai (mod mi) is a covering 
system of congruences and nilmi for each i, then ai (mod ni) is also a covering system 
of congruences. Thus, there exists io, such that Oic, = 1 and consequently mio = 2'0. It 
follows that io = r or else we would have mio I mio±i. 

Next, we shift the system of congruences by ar, that is, change the variable x 
to x ar, so that we may assume that the rth congruence has the form 0 (mod 20r). 
Consider now integers of the form x21r  1, with x E Z. None of these integers is 
covered by the congruence 0 (mod 2fir), however all of them are covered by the rest 
of the congruences, since the system is a covering system. Our system now takes the 
form: 

x2Pr (*) 

Note that it may happen that not all of the congruences have solutions; however, when- 
ever a congruence has solutions, we must have 

gcd(gr, 

Since gcd(20r , m5) = 205, it follows that 2' Let 

U.{s:1<s<r 1 such that 2/3s 1 as + 1}. 

For every s E U, the congruence (*) takes the form x2fir-fis (a, + 1)12f3s (mod Os) 
or x cs (mod Os) for some integers cs. This new system of congruences is a cov- 
ering system of congruences with all distinct odd moduli, contradicting the Selfridge 
conjecture. ¦ 
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Proof Without Words: 
Sums of Triangular Numbers 

tn 

t1 

t2 

...= 

tn 

= 

= = -(n+1) 

t1+t2 

-ROGER B. NELSEN 
LEWIS & CLARK COLLEGE 

PORTLAND OR 97219 


	Article Contents
	p. 228
	p. 229
	p. 230
	p. 231

	Issue Table of Contents
	Mathematics Magazine, Vol. 78, No. 3 (Jun., 2005), pp. 175-252
	Front Matter
	In the Shadow of Giants: A Section of American Mathematicians, 1925-1950 [pp. 175-191]
	Cartoon: In De Morgan's Grocery [p. 191-191]
	Farmer Ted Goes 3D [pp. 192-204]
	Pythagorean Triples and Inner Products [pp. 205-213]
	Proof without Words: Viviani's Theorem [p. 213-213]
	Notes
	Wafer in a Box [pp. 214-220]
	A Theorem of Frobenius and Its Applications [pp. 220-225]
	Proof without Words: (0, 1) and [0, 1] Have the Same Cardinality [p. 226-226]
	A "Base" Count of the Rationals [pp. 227-228]
	Covering Systems of Congruences [pp. 228-231]
	Proof without Words: Sums of Triangular Numbers [p. 231-231]
	On the Metamorphosis of Vandermonde's Identity [pp. 232-238]

	Problems [pp. 239-244]
	Review: Reviews [pp. 245-246]
	News and Letters [pp. 247-252]
	Back Matter



