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It all started one day when I went running on a trail with my faithful dog Rover. Now 
Rover does not actually rove. In fact, Rover is so well trained that he always runs 
exactly one yard to my right. As long as I change direction smoothly, he will adjust his 

speed and his path perfectly so as to remain in this position. Of course, I must choose 
my path so that he is not required to run through trees or other obstacles. 

On this particular day our trail was flat but curvy. We looped around several times, 
as shown in FIGURE 1. As nearly as I can tell from a map, the farthest we got from 
our starting and finishing point S was about a mile as the crow flies (not as the Crofoot 
runs). 

Figure 1 The trail 

Prostrate on the couch at the end of our run, I could not help but notice that Rover 
still had lots of energy. This upset my athletic self-image to the extent that I almost 
resolved to cut back on ice cream and begin a rigorous program of monthly exercise. 
Fortunately, I was saved from this fanaticism by the reassuring realization that I had 
run farther than Rover, having been on the outside on most of our turns. 

Now I would like to know this: How much farther did I run than Rover? 
Surprisingly, the exact answer to this question can be determined from FIGURE 1 

without any additional information. In the course of arriving at that answer, we will 
develop some ideas that are central to differential geometry and topology. (Expert 
readers who already know the answer may be interested to know that this elementary 
treatment does not require using arc length as a new parameter. Switching between two 
independent variables, time and arc length, is often a stumbling block for students.) 

Since FIGURE 1 is quite complicated, let's consider a simpler situation first. Sup- 
pose that I run with Rover on a track instead of a trail. The track has the usual shape, 
with semicircular ends connected by straight sides. As we round the ends, the out- 
side runner follows a circle of radius R + 1 while the inside runner follows a circle 
of radius R. During one complete lap, the difference in total distance is 27r(R + 1) - 
2r R = 27r yards. Note that this difference does not involve R. So the length of the 
track does not matter. 

Now we start to wonder (you and I, that is-not Rover!): since the length of the 
track does not matter, perhaps the shape of the track does not matter. The difference 
in distance will be greatest along stretches where the track turns most quickly, but it 
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seems plausible that the difference in total distance depends only on the total amount 
of turning that occurs along the way, taking account of the direction of the turns. We 
will show that this is indeed the case. 

The central idea is that smooth curves can be approximated by arcs of circles. What 
this means physically is that when I am running on a curved path, both my direction 
and the sharpness of my turn at any moment are the same as if I were running on some 
circular path of an appropriate radius. This approximating circle at a point on my path 
is called the osculating circle at the point, and its radius is the radius of curvature of 
my path at the point. As I run with Rover along a curved trail, the difference in our 
speeds at any time is related to the different radii of our osculating circles. In order to 
maintain his position alongside of me, Rover must adjust his speed and direction to 
ensure that at each instant his osculating circle has a radius one yard larger or smaller 
than mine, depending on the direction of our turn. 

Curves and angle functions The position of an object moving in a plane (a running 
person or dog, for example) can be described relative to some fixed reference point 
O by a vector-valued function r(t) = (x(t), y(t)), where t is time. This function is a 
parametrization for an oriented curve F. FIGURE 2 shows such a curve, parametrized 
by r(t) as t varies within an interval [a, b]. The arrows on the curve indicate the direc- 
tion along the curve corresponding to increasing t. 

Q ^-- Osculating 
/ C Circle 

T(t>\At Q 

r N(t) 

B r(a)/ p 

A 

Figure 2 Analysis of a Curve 

If r(t) is differentiable, the derivative r'(t) = (x'(t), y'(t)) represents the velocity of 
an object whose position is given by r(t). For any t such that r'(t) : 0, the vector r'(t) 
is tangent to r at the point (x(t), y(t)) and points in the direction of F. The magnitude 
of this vector is the speed, which can be integrated to calculate the distance travelled 
along r. 

The vector (-y'(t), x'(t)), obtained by rotating the velocity vector counter-clockwise 
90 degrees, is normal to r at the same point. Dividing by the magnitudes of these vec- 
tors, we obtain a unit tangent vector T(t) and a unit normal vector N(t): 

(-y'(t) (x'(t), y'((2)) 
T(t) = Ir'(t) I r -(t), r(t) 

N(t)= 
' 

'(2) 
I r'(t) I 

These vectors are shown at the point P in FIGURE 2. 
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Let r be a curve parametrized by a continuous function r(t). Assume that the origin 
does not lie on r, so that r(t) is never the zero vector. For any particular value of t, the 
point (x(t), y(t)) on r can be represented using polar coordinates (r(t), 0(t)), where 

r(t) = v[x(t)]2 + [y(t)]2 = I r(t) 1, (3) 

x(t) y(t) 
cos0(t) = (t' sin 0(t) = () (4) 

r(t r(t) r(t) 

The angle 0(t) is not uniquely defined by these equations. If Oo(t) is one solution 
of the equations, then the general solution is 0(t) = 00(t) + 2nrn(t), where n(t) is any 
integer-valued function of t. However, once we have selected an angle from among the 
various possible angles at any particular point on the curve, we can change this angle 
continuously as we move along the curve, never jumping by a multiple of 2zr. The re- 
sulting continuous angle function 0(t) is not uniquely determined by the parametriza- 
tion r(t), but any two continuous angle functions differ by a constant, which is an in- 
teger multiple of 2r. This informal discussion of continuous angle functions is made 
rigorous elsewhere [1; 3, pp. 17-19, 35-37]. From now on, whenever we talk about 
an angle function for a curve, we will always mean a continuous angle function-a 
continuous function 0(t) such that equations (4) are satisfied for all t. 

As t varies from t = tl to t = t2, the change 0(t2) - 0(tl) does not depend on the 

particular angle function 0(t), since any two angle functions differ by a constant. This 
change can be interpreted as the total angle through which the position vector r(t) 
turns as t varies from tl to t2. In particular, 0(b) - 0(a) represents the total angle 
through which r(t) turns along the entire curve r. By the total angle we mean the total 
signed angle, which increases as r(t) turns counterclockwise and decreases as r(t) 
turns clockwise, possibly taking negative values. 

If r(a) = r(b), then r is a closed curve. In this case the change 0(b) - 0(a) must 
be an integer multiple of 2zr because the angles 0(a) and 0(b) refer to the same point. 
The integer [0(b) - 0(a)]/(2rr) represents the number of times that r winds around 
the origin (with counterclockwise counting as positive and clockwise counting as neg- 
ative). This integer is called the index, or winding number, of r with respect to the 
origin. 

If r(t) is differentiable, then any angle function 0(t) has a derivative, which can be 
calculated from equations (3) and (4): 

x(t),y(t) - x (t) y(t) x(t)y (t) - x (t) y(t) 
o '(t) = 2 (5) 

I r(t) 12 [x(t)]2 + [y(t)]2 

The change in angle along the curve can be computed by integration: 

rb 

0(b)-0 (a)= 0'(t)dt. 

Having talked about angle functions, we should give some indication of how we 
intend to apply them. An angle function for a curve describes the turning of the position 
vector r(t). For the curve in FIGURE 1, what concerns us is not the turning of r(t) 
but the turning of a tangent vector. Therefore, in order to apply the idea of an angle 
function, we will need to consider a curve constructed from the given curve by using 
the tangent vector T(t) of the given curve as the parametrization for the new curve. 
This idea is developed in the next section. 

Turning rate along a curve The unit tangent vector T(t) is defined at all points on r 
where the velocity r'(t) is not zero. We now demand that T(t) be a continuous function 
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defined on the entire parameter interval [a, b]. This will happen when the following 
two conditions are satisfied: 

1. The function r(t) is continuously differentiable on [a, b] (using one-sided deriva- 
tives at the endpoints a and b), 

2. At any point where r'(t) = 0, there is no change in direction of the curve, so that 
the function T(t) can be continuously extended to include this point in its domain. 

Then T(t) may be regarded as a parametrization for a curve r' called the tangent 
indicatrix. The points of r' all lie on the unit circle. The vector T(t) may trace out 
parts of this circle repeatedly as t varies, in which case these repetitions are considered 
to be distinct parts of the parametrized curve r'. 

Let 0 (t) denote a continuous angle function for F'. We want to apply equation (5) 
to obtain a formula for 0'(t). The position vector for r' is T(t) = c(t)r'(t), where 
c(t) = 1/1 r'(t) 1. Therefore, in equation (5) we will replace x(t) by c(t)x'(t) and y(t) 
by c(t)y'(t)). Assuming that x"(t) and y"(t) both exist for all t, we calculate 

x'(t)y"(t) - x"(t)y'(t) (6) q'(t)= . I (6) 
I r'(t) 12 

Actually this formula can be derived assuming only that c(t) is any positive, differ- 
entiable function, not necessarily 1/I r'(t) I. Intuitively this is because the amount 
of turning of a tangent vector does not depend on the length of the tangent vector. 
For purposes of defining the angle function ((t), we could just as well use a curve 
parametrized simply by r'(t) instead of T(t). 

A straightforward calculation, starting from equations (1) and (2) and using (6), 
yields the following formulas for the derivatives of the unit tangent vector and the unit 
normal vector: 

T'(t) = 5'(t)N(t), N'(t) = -4'(t)T(t). (7) 

Taking magnitudes here, and recalling that T(t) and N(t) are unit vectors, we see that 
I T'(t) I = | N'(t) I = I 0'(t) 1. Thus the magnitude of the rate of change of the angle 
0 (t) is the same as the magnitude of the rate of change of the unit tangent vector and 
the unit normal vector. All three of these rates are equivalent measures of the rate of 
turning along r. 

The rate of turning is related to the radius of curvature. Most calculus books derive 
the following expression for the radius of curvature at any point (x(t), y(t)) on r: 

([X'(t)]2 + [y/(t)]2)3/2 
I x'(t)y"(t) - x"(t)y'(t) I 

Using equation (6), we can express this as I r'(t) I/ I '(t) I. The denominator here may 
be zero for some particular value of t, in which case the radius of curvature at the 
corresponding point on the curve r is considered to be either undefined or infinite. 
This happens at all points if the curve is a straight line. It also happens at points where 
the curve changes turning direction, and, for an instant, is not curving at all. 

If we omit the absolute value in the denominator in the above expressions for the 
radius of curvature, we obtain a signed radius of curvature, which is positive when the 
curve is turning counterclockwise and negative when it is turning clockwise. Letting 
R(t) denote the signed radius of curvature at the point with position vector r(t), we 
have 

R(t)= . (8) 
?'(t> 
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Back to Rover Now consider Rover and me as we run along the trail shown in 
FIGURE 1. Choose a convenient coordinate system, and let rl (t) be a parametrization 
for my path. Define unit tangent and unit normal vectors as before, T(t) and N(t). 

Assuming that Rover runs exactly a yards to my right, where a is a constant, 
Rover's path is parametrized by 

r2(t) = r(t) - aN(t). 

Taking the derivative and using equations (1) and (7), we get 

r(t) r'(t) - aN'(t) = rl (t) + a?'(t)T(t) 

= [I r'l(t) I + a?'(t)]T(t). 

Then, since T(t) is a unit vector, 

I r(t) I = I I r'(t) +a0'(t) = r'(t) + a0'(t), 

provided the quantity I r' (t) I + a0'(t) is never negative. This is a reasonable assump- 
tion, as we will see shortly. First we will complete our calculation. Using this equation 
and the standard formula for arc length, we calculate the difference in arc length along 
the two paths: 

ab /b 

L2- L1= Ir(t) Idt- Ir' (t) Idt 
a a 

= a j 0'(t) dt = a[{ (b) - (a)]. 

As explained earlier, the quantity 0(b) - 0(a) represents the total angle through 
which the tangent vector T(t) turns as t varies from a to b. We can determine this angle 
just by looking at FIGURE 1. The two loops in the middle can be ignored, because the 
clockwise loop cancels the counterclockwise loop. The remaining part of the curve 
amounts to one-and-a-half turns clockwise. (Note that we finish our run going in the 
opposite direction from our starting direction.) Thus the total turning angle is -37r, 
and L2 - L1 = a(-37r). Taking a = 1 yard, we conclude that I ran 3rt yards farther 
than Rover. No wonder I was so tired! 

In our calculation we assumed that I r'(t) I + ac/'(t) > 0 for all t. Suppose this 
were violated, so that I r' (t) I + a4p'(t) < 0 at some time t. Letting R1 (t) be the signed 
radius of curvature of my path, and using equation (8), it would follow that -a < 
R (t) < 0. This would mean that my path was turning clockwise with a radius of 
curvature I R1 (t) I < a. I would be turning towards Rover so sharply that he could not 
compensate by slowing down. Instead he would have to do some additional running 
around (perhaps on a rather small scale) in order to remain in the ideal position beside 
me. Our simple formula for L2 - L1 would no longer apply. The reader might like to 
think about what happens if, for example, I run clockwise around a circle of radius less 
than one yard while Rover remains exactly one yard to my right. 

We have been using real vector notation for our parametrizations, but complex no- 
tation has its advantages. The reader is invited to investigate how much simpler the 
computations become when my path is parametrized by a complex-valued function 
l(t). For instance, our unit normal vector is simply iei0(t), where 0(t), defined as 

before, is an argument function for ((t) . 
From a purely mathematical point of view, we have been comparing the arc lengths 

of two parallel curves. The mathematics we have presented is certainly not new, but 
there seems to be no single reference from which it can be easily extracted. Many of 
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the ideas are to be found scattered through the first 25 pages of Klingenberg [4], while 
Exercise 6 on p. 47 of do Carmo [2] states a special case of our formula for L2 - L1. 
Many excellent sources are available [5, 6] for anyone interested in delving further 
into differential geometry. 
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Proof Without Words: 
Lunes and the Regular Hexagon 

THEOREM. If a regular hexagon is inscribed in a circle and six semicircles con- 
structed on its sides, then the area of the hexagon equals the area of the six lunes plus 
the area of a circle whose diameter is equal in length to one of the sides of the hexagon. 
[Hippocrates of Chios, ca. 440 B.C.E] 
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