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In addition to the standard definitions of the hyperbolic functions (for instance, 
coshx = (eX + e-X)/2), current calculus textbooks typically share two common fea- 
tures: a comment on the applicability of these functions to certain physical problems 
(for instance, the shape of a hanging cable knowll as the catenary) and a remark on 
the analogies that exist between properties of the hyperbolic functions and those of 
the trigonometric functions (for instance, the identities cosh2x-sinh2x = 1 and 
cos2 x + sin2 x = 1). Texts that offer historical sidebars are likely to credit develop- 
ment of the hyperbolic functions to the 1 8th-century mathematician Johann Lambert. 
Implicit in this treatment is the suggestion that Lambert and others were interested 
in the hyperbolic functions in order to solve problems such as predicting the shape 
of the catenary. Left hanging is the question of whether hyperbolic functions were 
developed in a deliberate effort to find functions with trig-like properties that were 
required by physical problems, or whether these trig-like properties were unintended 
and unforeseen by-products of the solutions to these physical problems. The drama of 
the early years of the hyperbolic functions is far ricller than either cf these plot lines 
would xuggest. 

Prologue: The catenary curve 

What shape is assumed by a flexible inextensible cord hung freely from two fixed 
points? Those with an interest in the history of mathematics would guess (correctly) 
that this problem was first resolved in the late 17th century and involved the Bernoulli 
family in some way. The curve itself was first referred to as the "catenary" by Huygens 
in a 1690 letter to Leibniz, but was studied as early as the l5th century by da Vinci. 
Galileo mistakenly believed the curve would be a parabola [81. In 1669, the German 
mathematician Joachim Jungius (1587-1657) disproved Galileo's claim, although his 
correction does not seem to have been widely known within 17th-century mathemati- 
cal circles. 

17th-century mathematicians focused their attention on the problem of the catenary 
when Jakob Bernoulli posed it as a challenge in a 1690 Acta Eruditorum paper in 
which he solved the isochrone problem of constructing the curve along which a body 
will fall in the same amount of time from any starting position. Issued at a time when 
the rivalry between Jakob and Johann Bernoulli was still friendly, this was one of the 
earliest challenge problems of the period. In June 1691, three independent solutions 
appeared in Acta Eruditorum L1, 11, 161. The proof given by Christian Huygens em- 
ployed geometrical arguments, while those offered by Gottfried Leibniz and Johann 
Bernoulli used the new differential calculus techniques of the day. In modern termi- 
nology, the crux of Bernoulli's proof was to show that the curve in question satisfies 
the differential equation dy/dx = s/k, where s represents the arc length from the ver- 
tex P to an arbitrary point Q on the curve and k is a constant depending on the weight 
per unit length of cord as in FIGURE 1. 
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Figure 1 The catenary curve 

Showing that y = k eosh(x/k) is a solution of this differential equation is an aeees- 
sible problem for today's seeond-semester ealeulus student. 17th-eentury solutions of 
the problem differed from those of today's ealeulus students in a partieularly notable 
way: There was absolutely no mention of hyperbolic functions, or any other explicit 
function, in the solutions of 1691! In these early days of ealeulus, eurve eonstruetions, 
and not explieit funetions, were east in the leading roles. 

A suggestion of this earlier perspeetive ean be heard in a letter dated September 19, 
1718 sent by Johann Bernoulli to Pierre Reymond de Montmort (1678-1719): 

The efforts of my brother were without sueeess; for my part, I was more fortu- 
nate, for I found the skill (I say it without boasting, why should I eoneeal the 
truth?) to solve it in full and to reduee it to the reetifieation of the parabola. It 
is true that it eost me study that robbed me of rest for an entire night. It was 
much for those days and for the slight age and practiee I then had, but the next 
morning, filled with joy, I ran to my brother, who was still struggling miserably 
with this Gordian knot without getting anywhere, always thinking like Galileo 
that the catenary was a parabola. Stop! Stop! I say to him, don't torture yourself 
any more to try to prove the identity of the catenary with the parabola, since it is 
entirely false. The parabola indeed serves in the construction of the eatenary, but 
the two curves are so different that one is algebraie, the other is transcendental 
. . . (as quoted by Kline [13, p. 473]). 

The term rectification in this passage refers to the problem of determining the arc 
length of a curve. The partieular parabola used in Bernoulli's eonstruetion (given by 
y = x2/8 + 1 in modern notation) was defined geometrieally by Bernoulli as having 
';latus reetum quadruple the latus reetum of an equilateral hyperbola that shares the 
same vertex and axis" [1, pp. 274-275]. Bernoulli used the are length of the segment 
of this parabola between the vertex B = (O, 1) and the point H = (>/8(y-1), y) to 
eonstruet a segment GE sueh that the point E would lie on the eatenary. In modern 
notation, the length of segment GE is the parabolie are length BII, given by 

Arelength = Sy2-1 + ln (y + A/y2-l ) 

while the eatenary point E is given by 

E = (-ln(y++/y2-1) y) = (x ex +e-X) 

The expression Xy2-1 in the are length formula is the abseissa of the point 
G (+/y2-1, y) on the equilateral hyperbola (y2 _ X2 = 1 ) that played both the eentral 



role described above in defining the parabola necessary for the construction, as well 
as a supporting role in constructing the point E. Because a procedure for rectifying 
a parabola was known by this time, this reduction of the catenary problem to the 
rectification of a parabola provided a complete 17th-century solution to the catenary 
problem. 

cantenary 
hyperbola 

\\\S f//n/ 
'< /A/' < pblrlbola 

-B 

Figure 2 E3ernoulli's construction of the catenary curve 

Interestingly, another of the "first solverKs'7 of the catenary problem, Chl ikstian Huy- 
gens, solved the rectification problem lor the parabola as early as 1659. In fdCt, al- 

though the rectification problem had been declared by Descartes as beyond the capac- 
ity of the human mind 14, pp. 9()-9l l, the plxoblem of l-ectifying a curve C was known 
to be equivalent to the pl oblem of findillg the arel lllldel- all a.ssoclated culove C' by the 
time Huygens took up the pal-lbola questioll. 

A general prcocedure f(r determinirl: the curve C' s/ls pr(vicled hy Hendlick 
van Heuraet (1634-166)()) in a papel- that appeared ilvl Vcill Scllo( >ten's l65') Latin 
edition of Descartes' Lcl Ge07nets-ie. (In modern notatioll, C' ix defilled by L(t) - 
Jb 21 + (dy/dx)-dx, where wn = f(x) defines the original curve C.) Huygens used 
this procedure to show that rectification of a parabola is equivalent to finding the 
area under a hyperbola. A solution of this latter problem in the study of curves- 
determining the area under a hyperbola was first published by Gregory of St. Vin- 
cent in 1647 [13, p. 354]. Anton de Sarasa later recognized (in 1649) that St. Vincent's 
solution to this problem provided a method lor computation of logarithmic values. 

As impressive as these early "pre-calculus" calculus results were, by the time the 
catenary challenge was posed by Jakob Bernoulli in 1690, the l ate at which the study of 
curves was advancing was truly astounding, thanks to the groundbreaking techniques 
that had since been developed by Isaac Newton (1642-1727) and Gottfried Leibniz 
(1646-1716). Relations between the Bernoulli brothers -fared less well over the en- 
suing decades, as indicated by a later passage from Johann Bernoulli's 1718 letter to 
Montmort: 

But then you astonish me by concluding that my brother found a method of 
solving this problem.... I ask you, do you really think, if my brother had solved 
the problem in question, he would have been so obliging to me as not to appear 
among the solvers, just so as to cede me the glory of appearing alone on the stage 
in the quality of the first solver, along with Messrs. Huygens and Leibniz? (as 
quoted by Kline 113, p. 473]) 

Historical evidence supports Johann's claim that Jakob was not a "first solver" of 
the catenary problem. But in the year immediately following that first solution, Jakob 
Bernoulli and others solved several variations of this problem. Huygens, for example, 
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used physical arguments to show that the curve is a parabola if the total load of cord 
and suspended weights is uniform per horizontal foot, while for the true catenary, 
the weight per foot along the cable is uniform. Both Bernoulli brothers worked on 
determining the shape assumed by a hanging cord of variable density, a hanging cord 
of constant thickness, and a hanging cord acted on at each point by a force directed 
to a fixed center. Johann Bernoulli also solved the converse problem: given the shape 
assumed by a flexible inelastic hanging cord, find the law of variation of density of 
the cord. Another nice result due to Jakob Bernoulli stated that, of all shapes that may 
be assumed by flexible inelastic hanging cord, the catenary has the lowest center of 
gravity. 

A somewhat later appearance of the catenary curve was due to Leonhard Euler in 
his work on the calculus of variations. In his 1744 Methodus Inveniendi Lineas Curvas 
Maximi Minimive Proprietate Gaudentes [5], Euler showed that a catenary revolved 
about its axis (the catenoid) generates the only minimal surface of revolution. Calculat- 
ing the surface area of this minimal surface is another straightforward exercise that can 
provide a nice historical introduction to the calculus of variations for second-semester 
calculus students. Kline [13, p. 5791 comments that Euler himself did not make effec- 
tive use of the full power of the calculus in the Methodus; derivatives were replaced by 
difference quotients, integrals by finite sums, and extensive use was made of geomet- 
ric arguments. In tracing the story of the hyperbolic functions, this last point cannot be 
emphasized enough. From its earliest introduction in the 15th century through Euler's 
1744 result on the catenoid, there is no connection made between analytic expressions 
involving the exponential function and the catenary curve. Indeed, prior to the develop- 
ment of 1 8th-century analytic techniques, no such connection could have been made. 
Calculus in the age of the Bernoullis was "the Calculus of Curves," and the catenary 
curve is just that a curve. The hyperbolic functions did not, and could not, come into 
being until the full power of formal analysis had taken hold in the age of Euler. 

Act 1: The hyperbolic functions in Euler? 

In seeking the first appearance of the hyperbolic functions as tunctions, one naturally 
looks to the works of Euler. In fact, the expressions (ex + e--t)/2 and (e-' -e-X)/2 
do make an appearance in Volume I of Euler's Introductio in analysin infinitorum 
(1745, 1748) [61. Euler's interest in these expressions seems natural in view of the 
equations cos x = (eX + e-X)/2 and Si sin x = (eX _ e-- )/2 that he 
derived in this text. However, Euler's interest in what we call hyperbolic functions 
appears to have been limited to their role in deriving infinite product representations 
for the sine and cosine functions. Euler did not use the word hyperbolic in reference 
to the expressions (ex + e-X)/2, (ex _ e-X)/2, nor did he provide any special notation 
or name for them. Nevertheless, his use of these expressions is a classic example of 
Eulerian analysis, included here as an illustration of 18th-century mathematics. An 
analysis of this derivation, either in its historical form or in modern translation, would 
be suitable for student projects in pre-calculus and calculus, or as part of a mathematics 
history course. 

To better illustrate the style of Euler's analysis and the role played within it by 
the hyperbolic expressions, we employ his notation from the Introductio throughout 
this section. Although sufficiently like our own to make the work accessible to mod- 
ern readers, there are interesting differences. For instance, Euler's use of periods in 
"sin . x" and "cos . x" suggests the notation still served as abbreviations for sinus and 
cosinus, rather than as symbolic function names. Like us, Euler and his contemporaries 

1 8 

were intimately familiar with the infinite series representations for sin . x and cos . x, 
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but generally employed infinite series with less than the modern regard for rigor. Thus, 
as established in Section 123 of the Introductio, Euler could (and did) rewrite the ex- 
pression (ex _ e-x) as 

( x)i _ (1 _ x) = 2 (- + 1 2 3 + I 2 3 4 5 ) 

where i represented an infinitely large quantity (and not the square root of-1, de- 
noted throughout the Introductio as ). Other results used by Euler are also fa- 
miliarly unfamiliar to us, most notably the fact that an _ zn has factors of the form 
aa-2az cos .2k/n + zz, as established in Section 151 of the Introductio. 

Euler's development of infinite product representations for sin. x and cos. x 
in the Introductio begins in Section 156 by setting n = i, a = 1 + x/i, and z = 
1-x/i in the expression an _ zn (where, again, i is infinite, so, for example, 
an = ( I + X/ i)i = e ). After some algebra, the result of Section 151 cited above 
allowed Euler to conclude that e&-e--t has factors of the form 2-2xx/ii- 
2(1-xx/ii) cos .2k/n. Substituting cos .2k/n = 1-(2kk/ii)ffz (the first two 
terms of the infinite series representation for cosine) into this latter expression and 
doing a bit more algebra, Euler obtained the equation 

2xx xx ff 4xx A4kk A 4kkxx 
2 + . . -2 ( 1- . . j cos .2k-= . . + { . . zz- 

11 \ 11 / '1 11 V 11 i 

Ergo (to quote Euler), e-\ -e--t has factors of the l(rm I + xx/(kkff)-xx/ii. Since 
i is an infinitely large cluantity, Euler's arithllletic ol intinite and illfinitesimal numbers 
allowed the last term tc) drexp otlt (Tuckey alld .McKen7gie give a thorough discussion 
of these ideas 1171.) The end restllt of these; c llctllatiolls, as pl-esented in Section I gS6, 
thereby became 

e'-e-v& Z xx X Z xx X Z xx X Z xx X 

2 t J t + 4yl7TJ t1 + 9 J t1 + J etc 

XX X4 X() 

1 2 3 1 2 3 4 5 1 2 3 4 5 6 7 

A similar calculation (Section 157) derived the analogous series for (ex + e-X)/2. 
In Section 158, Euler employed these latter two results in the lollowing manner. 

Recalling the well-known fact (which he derived in Section 134) that 

e -e: . Z3 Z5 

2 =sln.z=Z- 1 2 3+ 1 2 3 4 5 

Euler let x = z Si in equation (1 ) above to get 

( lTlT) ( 47r1r) (1-9yT ) (1- ZA ) etc 

= z (1--) (1 + ) (1-2 ) (1-+2 ) (1-3 )etc. 

The same substitution, applied to the series with even terms, yielded the now-familiar 
product representation for cos .z. 

Here we arrive at Euler's apparent goal: the derivation of these lovely infinite prod- 
uct representations for the sine and cosine. Although the expressions (ex + e-X)/2 and 

19 VOL. 77, NO. 1, FEBRUARY 2004 



(ex _ e-X)/2 played a role in obtaining these results, it was a supporting role, with the 
arrival of the hyperbolic functions on center stage yet to come. 

Act 11, Scene 1: Lambert's first introduction of hyperbolic functions 

Best remembered today for his proof of the irrationality of gT, and considered a fore- 
runner in the development of noneuclidean geometries, Johann Heinrich Lambert was 
born in Mulhasen, Alsace on August 26, 1728. The Lambert family had moved to 
Mulhasen from Lorraine as Calvinist refugees in 1635. His father and grandfather were 
both tailors. Because of the family's impoverished circumstances (he was one of seven 
children), Lambert left school at age 12 to assist the family financially. Working first 
in his father's tailor shop and later as a clerk and private secretary, Lambert accepted 
a post as a private tutor in 1748 in the home of Reichsgraf Peter von Salis. As such, 
he gained access to a good library that he used for self-improvement until he resigned 
his post in 1759. Lambert led a largely peripatetic life over the next five years. He was 
first proposed as a member of the Prussian Academy of Sciences in Berlin in 1761. 
In January 1764, he was welcomed by the Swiss community of scholars, including 
Euler, in residence in Berlin. According to Scriba [21S, Lambert's appointment to the 
Academy was delayed due to "his strange appearance and behavior." Eventually, he 
received the patronage of Frederick the Great (who at first described him as "the great- 
est blockhead") and obtained a salaried position as a member of the physical sciences 
section of the Academy on January l O, 1765. He remained in this position, regularly 
presenting papers to each of its divisions, until his death in 1777 at the age of 49. 

Lambert was a prolific writer, presenting over 150 papers to the Berlin Academy 
in addition to other published and unpublished books and papers written in German, 
French, and Latin. These included works on philosophy, logic, semantics, instrument 
design, land surveying, and cartography, as well as mathematics, physics, and astron- 
omy. His interests appeared at times to shift almost randomly from one topic to an- 
other, and often fell outside the mainstream of 18th-century science and mathematics. 
We leave it to the reader to decide whether his development of the hyperbolic functions 
is a case in point, or an exception to this tendency. 

Lambert first treated hyperbolic trigonometric functions in a paper presented to 
the Berlin Academy of Science in 1761 that quickly became famous: Me'moire sur 
quelques proprie'te's remarquables des quantite's transcendantes circulaires et loga- 
rithmiqes [14]. Rather than its consideration of hyperbolic functions, this paper was 
(and is) celebrated for giving the first proof of the irrationality of z. Lambert estab- 
lished this long-awaited result using continued fractions representations to show that z 
and tan z cannot both be rational; thus, since tan(ff/4) is rational, ff can not be. 

Instead of concluding the paper at this rather climatic point, Lambert turned his 
attention in the last third of the paper to a comparison of the "transcendantes cir- 
culaire" [sin v, cos v,] with their analogues, the "quantite's transcendantes logarith- 
miques" [(ev + e-U)/2, (ev _ e-l')/2]. Beginning in Section 73, he first noted that the 
transcendental logarithmic quantities can be obtained from the transcendental circular 
quantities by taking all the signs in 

sinv = v- V3 + V5 - V7 +etc. 
2 3 2 3 4 5 2 3 4 5 6 7 

to be positive, thereby obtaining 

eV _ e-V 1 1 1 

= V + V3 + V5 + V7 +etc. 
2 2 3 2 3 4 5 2 3 4 5 6 7 
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and similarly for the cosine series. He then derived continued fraction representa- 
tions (in Section 74) for the expressions (ev _ e-U)/2, (ev + e-U)/2, and (ev _ e-U)/ 
(ev + e-U), and noted that these continued fraction representations can be used to show 
that v and ev cannot both be rational. The fact that none of its powers or roots are ratio- 
nal prompted Lambert to speculate that e satisfied no algebraic equation with rational 
coefficients, and hence is transcendental. Charles Hermite (1822-1901) finally proved 
this fact in 1873. (Ferdinand Lindemann (1852-1939) established the transcendence 
of ff in 1882.) 

Although Lambert did not introduce special notation for his "quantite's transcen- 
dantes logarithmiques" in this paper, he did go on to develop the analogy between 
these functions and the circular trigonometric functions that he said "should exist" 
because 

. . . the expressions eu + e-u, eu _ e-u, by substituting u = v+/=T, give the cir- 
cular quantities el' + e-U = 2 cos v, el'-e-l' = 2 sin v +/=i. 

Lambert was especially interested in developing this "affinity" as far as possible 
without introducing imaginary quantities. To do this he introduced (in Section 75) a 
parameterization of an "equilateral hyperbola" (X2 _ y2 = | ) to define the hyperbolic 
functions in a manner directly analogous to the definition of trigonometric functions 
by means of a unit circle (X2 + y2 = 1 ). Lambert's parameter is twice the area of the 
hyperbolic sector shown in FIGURE 3. Lambert used the letter M to denote a typical 
point on the hyperbola, with coordinates (d, ). 

/Xt V 
/0 :g 

C A 

Figure 3 The parameter u represents twice the area of the shaded sector MCA 

In Lambert's own diagram (FIGURE 4), the circle and the hyperbola are drawn to- 
gether. The letter C marks the common center of the circle and the hyperbola, CA is 
the radius of the circle, CF the asymptote of the hyperbola, and AB the tangent line 
common to the circle and the hyperbola. The typical point on the hyperbola corre- 
sponds to a point N on the circle, with coordinates (x, y). Lowercase letters m and n 
mark nearby points on the hyperbola and circle, for use in differential computations. 

Denoting the angle MCA by Nb, Lambert listed several differential properties for 
quantities defined within this diagram, using a two-columned table intended to display 
the similarities between the "logarithmiques" and "circulaires" functions. The first 
seven lines of this table, reproduced below, defined the necessary variables and stated 
basic algebraic and trigonometric relations between them. Note especially the third 
line of this table, where u/2 (which Lambert denoted as u: 2) is defined to be the area 
of the hyperbolic "segment" AMCA. 
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Figure 4 Di agram from Lambert's 1 761 Memoire 

pour l'hyperbole 

CP=t... 
PM= r1... 
AMCA = u: 2... 

tang Q = ¢5 . . . 

1 + 00 = tt = 00 cot02 . . . 
tt-1=r7r7= tt tang 02... 

CM = 42 + ,72 

= 42(1 + tang ¢)2) = {+tang02 

pour le cercle 

. . . CQ - x 

...QN= Y 

. . . ANCA = v: 2 

. . . tang 0 = xY 

. . . 1-yy = xx = yy cot 02 

. . . 1-xx = yy = xx tang 02 
Cy2 = X2 + y2 

= X2(1 + tang02) = :+t g02 = 

I 'abscisse 
l 'ordonne' 
le segment 

et il sera 

Using these relations, it is a straightforward exercise to derive expressions for the 
differentials dd, dr7, dx, and dy (as a step toward hnding infinite series expressions for 
t and r7). For example, given tt-1 = r7r7 = tt tang 02 (tang would be tan in modern 
notation), it follows that t = 1/21-tang 02. Lambert noted this fact, along with the 
differential dd = tang 0 d tang 0/(1-tang 02)3:2 obtained from it, later in the table. 

To see how differential expressions for du and dv might be obtained, note that u 
is defined to be twice the area of the hyperbolic sector AMCA. The differential du 
thus represents twice the area of the hyperbolic sector MCm. This differential sec- 
tor can be approximated by the area of a circular sector of radius CM and angle d0; 
that is, du = 2[CM2d0/2]. Substituting CM2 = (1 + tang 02)/(1-tang 02) from the 
table above then yields du = d CM2 = dQ (1 + tang 02)/(1-tang 02), where 
dQ (1 + tang 02) = d(tang 0). Thus, du = d tang 0/(1-tang 02). Although Lam- 
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bert omitted the details of these derivations, his table summarized them as shown be- 
low. 

pour l'hyperbole pour le cercle 

d d ¢) ( X +tang 02 ) d d Q d tang 0 

d tang 0 

I-tang 02 

d _ tang Xd tang 0 _ d x _ tang Xd tang 0 
t (1-tang¢>2)3:2 (I +tangX2)3:2 

+ dr/ dtangX + dy dtangX 

+dd zdu=r/ ........... ... -dx :dv=y 

+ d r/ : du = t . . . . . . + dy : d v = x 
+ dd = d r/ tang 0 ... ...-dx : dy = tang 0 

Using the relations + dd: d u = r/, + d r/: d u = t from this table, along with stan- 
dard techniques of the era for determining the coefficients of infinite series, Lambert 
then proved (Section 77) that the following relations hold: 

1 3 1 5 1 7 t1 u+ 2 3u + 2.3.4.5 + 2.3 4 5 6 7 

t=M+2u +2 31 4u +2 3 4 5 6M6+etc., 

where we recall that t is the abscissa of a point on the hyperbola, 11 is the ordinate of 
that same point, and u repl-esents twice the area of the hyperbolic segment determined 
by that point. But these are exactly the infinite series for (ell-e-1')/2 and (e" + e-M)/2 
with which Lambert began his discussion of the "quantites transcendantes logarit1a- 
miques." 

Lambert was thus able to conclude (Section 78) that t = (et'-ell)/2 and 0 = 
(e'l-e-')/2 are, respectively, the abscissa and ordinate of a point on the hyperbola 
for which u represents twice the area of the hyperbolic segment determined by that 
point. 

A derivation of this result employing integration, as outlined in some modern cal- 
culus texts, is another nice problem for students. Contrary to the suggestion of some 
texts, it is this parameterization of the hyperbola by the hyperbolic sine and cosine, and 
the analogous parameterization of the circle by the circular sine and cosine, that seems 
to have motivated Lambert and others eventually to provide the hyperbolic functions 
with trig-like names-not the similarity of their analytic identities. This is not to say 
that the similarities between the circular identities and the hyperbolic identities were 
without merit in Lambert's eyes we shall see that Lambert and others exploited these 
similarities for various purposes. But Lambert's immediate interest in his 1761 paper 
lay elsewhere, as we shall examine more closely in the following section. 

Interlude: Giving credit where credit is due 

As Lambert himself remarked at several points in his 1761 Memoire, he was especially 
interested in developing the analogy between the two classes of functions (circular 
versus hyperbolic) as far as possible without the use of imaginary quantities, and it is 
the geometric representation (that is, the parameterization) that provides him a means 
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to this end. Lambert ascribed his own interest in this theme to the work of another 
18th-century mathematician whose name is less well known, Monsieur le Chevalier 
Franc50is Daviet de Foncenex. 

As a student at the Royal Artillery School of Turin, de Foncenex studied math- 
ematics under a young Lagrange. As recounted by Delambre, the friendships La- 
grange formed with de Foncenex and other students led to the formation of the Royal 
Academy of Science of Turin [7]. A major goal of the society was the publication 
of mathematical and scientific papers in their Miscellanea Taurinensia, or Me'langes 
de Turin. Both Lagrange and de Foncenex published several papers in early volumes 
of the Miscellanea, with de Foncenex crediting Lagrange for much of the inspiration 
behind his own work. Delambre argued that Lagrange provided de Foncenex with far 
more than inspiration, and it is true that de Foncenex's analytic style is strongly remi- 
niscent of Lagrange. It is also true that de Foncenex did not live up to the mathematical 
promise demonstrated in his early work, although he was perhaps sidetracked from a 
mathematical career after being named head of the navy by the King of Sardinia as a 
result of his early successes in the Miscellanea. 

In his earliest paper, Reflexions sur les Quantites Imaginaire [7], de Foncenex fo- 
cused his attention on "the nature of imaginary roots" within the debate concerning 
logarithms of negative quantities. In particular, de Foncenex wished to reconcile Eu- 
ler's "incontestable calculations" proving that negative numbers have imaginary log- 
arithms with an argument from Bernoulli that opposed this conclusion on grounds 
involving the continuity of the hyperbola (whose quadrature defines logarithms) at in- 
finity. The analysis that de Foncenex developed of this problem led him le consider 
the relation between the circle and the equilateral hyperbola exactly the same anal- 
ogy pursued by Lambert. 

In his 1761 Me'moire, Lambert fully credited de Foncenex with having shown how 
the affinity between the circular trigonometric functions and the hyperbolic trigono- 
metric functions can be "seen in a very simple and direct fashion by comparing the 
circle and the equilateral hyperbola with the same center and same diameter." De 
Foncenex himself went no further in exploring "this affinity" than to conclude that, 
since >/x2-r2 = A/r2 _ x2, "the circular sectors and hyperbolic [sectors] that 
correspond to the same abscissa are always in the ratio of 1 to ." It is this use of 
an imaginary ratio to pass from the circle to the hyperbola Lambert seemed intent on 

. . 

avolc .lng. 

Lambert returned to this theme one final time in Section 88 of the Me'moire. In 
another classic example of 18th-century analysis, Lambert first remarked that "one 
can easily find by using the differential formulas of Section 75," that 

v = tang 0-3 tang 03 + 5 tang 05-7 tang 07 + etc. 

1 2 17 
tang 0 = u-- U 3 +-U S--u 7 + etc 

"By substituting the value of the second of these series into the first ... and recipro- 
cally" (but again with details omitted), Lambert obtained the following two series: 

2 3 2 5 244 
v=u-3U + 3U -315u7+etc. (2) 

2 3 2 244 7 
u = v + 3V + 3V5 + 315v + etc. 

where (switching from previous usage) u equals twice the area of the circular sector 
and v equals twice the area of the hyperbolic sector. Finally, Lambert obtained the 
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sought-after relation by noting that substitution of u = v into series (2) will yield 
v = u. 

In (semi)-modern notation, we can represent Lambert's results as tanh(v) = 
tan(u) and tanh(u) = tan(v). Having thus established that imaginary hyperbolic 
sectors correspond to imaginary circular sectors, and similarly for real sectors, Lam- 
bert closed his 1761 Me'moire. The next scene examines how he later pursued a new 
plot line suggested by this analogy: the use of hyperbolic functions to replace circular 
functions in the solution of certain problems. 

Act 11, Scene 11: The reappearance of hyperbolic functions in Lambert 

Lambert returned to the development of his "transcendental logarithmic functions" 
and their similarities to circular trigonometric functions in his 1768 paper Ob- 
servations trigonometriques 1151 In this treatment, a typical point on the hyper- 
bola is called q. Letting 0 denote the angle qCQ in FIGURE 5, Lambert first re- 
marked that tang = IVN/IVC= qp/pC. Because MN/MC= sin0/cosQ and 
qp/ pC = sin hyp 0/ cos hyp 0, one has the option of using either the circular tangent 
function or the hyperbolic tangent functions for the purpose of analyzing triangle qCP. 
Note that the notation and terminology used here are Lambert's own! Lambert himself 
commented that, in view of the analogous parameterizations that are possible for the 
circle and the hyperbola, there is "nothing repugnant to the original meaning" of the 
terms "sine" and "cosine" in the use of the terms "hyperbolic sine" and "hyperbolic 
cosine" to denote the abscissa and ordinate of the hyperbola. Although Lambert's 
notation for these functions differed from our current convention, the hyperbolic func- 
tions had now become fully-fledgecl players in their own right, complete with names 
and notation suggestive of their relation to the circular trigonometric functions. 

AL' X / 

C RM Q p B 

Figure 5 Diagram from Lambert's Observations trigonometriques [151 

The development of the hyperbolic functions in this paper included an extensive 
list of sum, difference, and multi-angle identities that are, as Lambert remarked, eas- 
ilyderivedfromtheformulassinhypv-(eV+e-U)/2,coshypv=(ev-e-U)/2.0f 
greater importance to Lambert's immediate purpose was the table of values he con- 
structed for certain functions of "the transcendental angle co." In particular, the tran- 
scendental angle co, defined as angle PCQ in FIGURE S and related to the common 
angle 0 via the relation sin co = tang 0 = tang hyp 0, served Lambert as a means to 



pass from circular functions to hyperbolic functions. (The transcendental angle as- 
sociated with 0 is also known as the hyperbolic amplitude of 0 after Houel and the 
longitude after Guderman.) For values of @ ranging from 1° to 90° in increments of 1 
degree, Lambert's table included values of the hyperbolic sector, the hyperbolic sine 
and its logarithm, the hyperbolic cosine and its logarithm, as well as the tangent of 
the corresponding common angle and its logarithm. By replacing circular functions 
by hyperbolic functions, Lambert used these functions to simplify the computations 
required to determine the angle measures and the side lengths of certain triangles. 

The triangles that Lambert was interested in analyzing with the aid of the hyper- 
bolic functions arise from problems in astronomy in which one of the celestial bodies 
is below the horizon. It has since been noted that such problems can be solved using 
formulae from spherical trigonometry with arcs that are pure imaginaries. This is an 
intriguing observation since elsewhere (in his work on noneuclidean geometry), Lam- 
bert speculated on the idea that a sphere of imaginary radius might reflect the geometry 
of "the acute angle hypothesis." The acute angle hypothesis is one of three possibil- 
ities for the two (remaining) similar angles ol,,B of a quadrilateral assumed to have 
two right angles and two congruent sides: (1) angles ol,,B are right; (2) angles ol,,B 
are obtuse; and (3) angles al, ,B are acute. Girolamo Saccheri (1667-1733) introduced 
this quadrilateral in his Euclides ab omi naevo vindiactus of 1733 as an element of his 
efforts to prove Euclid's Fifth Postulate by contradiction. Both Saccheri and Lambert 
believed they could dispense with the obtuse angle hypothesis. Lambert's speculation 
about the acute angle hypothesis was the result of his inability to reject the acute angle 
hypothesis. 

It is worth emphasizing, however, that Lambert himself never put an imaginary ra- 
dius into the formulae of spherical trigonometry in any of his published works. The 
triangles he treated are real triangles with real-valued arcs and real-valued sides. As 
noted by historian Jeremy Gray [9, pp. 156-158], the ability to articulate clearly the 
notion of "geometry on a sphere of imaginary radius" was not yet within the grasp of 
mathematicians in the age of Euler. Gray argues convincingly that the development of 
analysis by Euler, Lambert, and other 18th-century mathematicians was, nevertheless, 
critical for the l9th-century breakthroughs in the study of noneuclidean geometry. By 
providing a language flexible enough to discuss geometry in terms other than those set 
forth by Euclid, analytic formulae allowed for a reformulation of the problem and the 
recognition that a new geometry for space was possible. Although rarely mentioned in 
today's calculus texts, the explicit connection eventually made by Beltrami in his 1868 
paper, linking the hyperbolic functions to the noneuclidean geometry of an imaginary 
sphere, is yet another intriguing use for hyperbolic functions that is surely as tantaliz- 
ing as the oft-cited catenary curve. 

Flashback: Hyperbolic functions in lliccati Although Lambert's primary reason 
for considering hyperbolic functions in 1768 was to simplify calculations involved 
in solving triangles, Lambert clearly realized that there was no need to define new 
functions for this purpose; tables of logarithms of appropriate trigonometric values 
could instead be used to serve the same end. But, he argued, this was only one possible 
use for the hyperbolic trigonometric functions in mathematics. The only example he 
cited in this regard was the simplification of solution methods for equations. Lambert 
did not elaborate on this idea beyond noting that the equation 0 = x2-2a cos X x + 
a2 is equivalent to the equation 0 = x2-2acoshypt x + a2 for an appropriately 
defined angle slr. He did, however, cite an investigation of this idea that had already 
appeared in the work of another 18th-century mathematician: Vincenzo de Riccati. 

Vincenzo de Riccati was born on January 11, 1707, the second son of Jacopo Riccati 
for whom the Riccati equation in differential equations is named. Riccati (the son) 
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received his early education at home and from the Jesuits. He entered the Jesuit order 
in 1726 and taught or studied in various locations, including Piacenza, Padua, Parma, 
and Rome. In 1739, Riccati moved to Bologna, where he taught mathematics in the 
College of San Francesco Saverio until Pope Clement XIV suppressed the Society of 
Jesus in 1773. Riccati then returned to his family home in Treviso, where he died on 
January 17, 1775. 

Riccati first treated hyperbolic functions in his two-volume Opuscula ad res phys- 
icas et mathematicas pertinentium (1757-1762) [19]. In this work, Riccati employed 
a hyperbola to define functions that he referred to as "sinus hyperbolico" and "cosi- 
nus hyperbolico," doing so in a manner analogous to the use of a circle to define the 
functions "sinus circulare" and "cosinus circulare." Taking u to be the quantity given 
by twice the area of the sector ACF divided by the length of the segment CA (whether 
in the circle or the hyperbola of FIGURE 6), Ricatti defined the sine and cosine of the 
quantity u to be the segments GF and CG of the appropriate diagram. Although Ricatti 
did not explicitly assume either a unit circle or an equilaterial hyperbola, his defini- 
tions are equivalent to that of Lambert (and our own) in that case. In Opusculum IV 
of Volume I, Ricatti derived several identities of his hyperbolic sine and cosine, apply- 
ing these to the problem of determining roots of certain equations, especially cubics. 
Riccati also determined the series representations for the sinus and cosinus hyperbol- 
icos. These latter results, which appeared in Opusculum VI in volume I, were earlier 
communicated by Riccati to Josepho Suzzio in a letter dated 1752. 

A 
D X / 

Figure 6 Diagrams rendered from Riccati's Opuscula 

In Riccati's Institutiones analyticae (1765-1767) [20], written collaboratively with 
Girolamo Saldini, he further developed the theory of the hyperbolic functions, includ- 
ing the standard addition formulas and other identities for hyperbolic functions, their 
derivatives and their relation to the exponential function (already implicit in his Opus- 
cula). 

Iteprise: Giving credit where credit is due While some of the ideas in Riccati's In- 
stitutiones of 1765-1767 also appeared in Lambert's 1761 Memoire, this author knows 
of no evidence to suggest that Riccati was building on Lambert's work. The publication 
dates of his earlier work suggest that Riccati was familiar with the analogy between 
the circular and the hyperbolic functions some time earlier than Lambert came across 
the idea, and certainly no later. Conversely, even though Riccati's earliest work was 
published several years before Lambert's 1761 Me'moire, it appears that Lambert was 
unfamiliar with Riccati's work at that time. Certainly, the motivations of the two for 
introducing the hyperbolic functions appear to have been quite different. Furthermore, 



Lambert appears to have been scrupulous in giving credit to colleagues when drawing 
on their work, as in the case of de Foncenex. In fact, Lambert credited Ricatti with 
developing the terminology "hyperbolic sine" and "hyperbolic cosine" when he used 
these names for the first time in his 1768 Observations trigonometriques. It thus ap- 
pears that it was only these new names and perhaps the idea of using these functions 
to solve equations that Lambert took from Riccati's work, finding them to be suit- 
able nomenclature for mathematical characters whom he had already developed within 
a story line of his own creation. 

Despite the apparent independence of their work, the fact remains that Riccati did 
have priority in publication. Why then is Lambert's name almost universally men- 
tioned in this context, with Riccati receiving little or no mention? Histories of mathe- 
matics written in the l9th and early 20th centuries suggest this tendency to overlook 
Riccati's work is a relatively recent phenomenon. Von Braunmuhl [22, pp. 133-134], 
for example, has the following to say in his 1903 history of trigonometry: 

In fact, Gregory St. Vincent, David Gregory and Craig through the quadrature of 
the equilateral hyperbola, erected the foundations [for the hyperbolic functions], 
even if unaware of the fact, Newton touched on the parallels between the circle 
and the equilateral hyperbola, and de Moivre seemed to have some understanding 
that, by substituting the real for the imaginary, the role of the circle is replaced 
by the equilateral hyperbola. Using geometric considerations, Vincenzo Riccati 
(1707-1775) was the first to found the theory of hyperbolic functions, as was 
recognized by Lambert himself. (Author's translation.) 

Although the amount of recognition that Lambert afforded Riccati may be overesti- 
mated here, it is interesting that von Braunmuhl then proceeded to discuss Lambert's 
work on hyperbolic functions in detail, with no further mention of Riccati, remarking 
that: 

This [hyperbolic function] theory is only of interest to us in so far as it came 
into use in the treatment of trigonometric problems, as was first opened up by 
Lambert. (Author's translation.) 

It would thus appear that the motivation Lambert assigned to the hyperbolic func- 
tions was more central to mathematical interests as they evolved thereafter, even 
though his interests often fell outside the mainstream of his own century. The fact 
that Lambert's mathematical works, especially those on noneuclidean geometry, were 
studied by his immediate mathematical successors offers support for this idea, as does 
the wider availability of Lambert's works today. Besides being more widely available, 
Lambert's work is written in notation-and languages! that are more familiar to 
today's scholars than that of Riccati. This alone makes it easier to tell Lambert's story 
in more detail, just as we have done here. 

Epi logue 

And what of the physical applications for which the hyperbolic functions are so useful? 
Although neither Lambert nor Riccati appear to have studied these connections, they 
were known by the late l9th century, as evidenced by the publication of hyperbolic 
function tables and manuals for engineers in that period. Yet even as late as 1849, we 
hear Augustus De Morgan [3, p. 66], declare: 
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The system of trigonometry, from the moment that is introduced, always 

presents an incomplete and one-sided appearance, unless the student have in his 
mind for comparison (though it is rarely or never wantedfor what is called use), 
another system [hyperbolic trigonometry] in which the there-called sines and 
cosines are real algebraic quantities. (Emphasis added.) 

While De Morgan's perspective offers yet another intriguing reason to study hy- 
perbolic trigonometry, usefulness in solving problems (mathematical or physical) did 
not appear to concern him. This delay between the development of the mathematical 
machinery and its application to physical problems serves as a gentle reminder that the 
physical applications we sometimes cite as the raison d'etre for a mathematical idea 
may only become visible with hindsight. Yet even Riccati's and Lambert's own uses 
for hyperbolic trigonometry went unacknowledged by De Morgan an even stronger 
reminder of how quickly mathematics changed in the l9th century, and how greatly 
today's mathematics classroom might be enriched by remembering the mathematics 
of the age of Euler. 
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