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It was known to the ancient Greeks that sums of two squares satisfy the composition
law

(x2
1 + x2

2)(y2
1 + y2

2) = z2
1 + z2

2

with

z1 = x1 y1 + x2 y2, z2 = x1 y2 − x2 y1,

and to Euler in 1770 that sums of four squares satisfy the composition law

(x2
1 + x2

2 + x2
3 + x2

4)(y2
1 + y2

2 + y2
3 + y2

4) = z2
1 + z2

2 + z2
3 + z2

4

with

z1 = x1 y1 + x2 y2 + x3 y3 + x4 y4, z2 = x1 y2 − x2 y1 + x3 y4 − x4 y3,

z3 = x1 y3 − x2 y4 − x3 y1 + x4 y2, z4 = x1 y4 + x2 y3 − x3 y2 − x4 y1.

Degen in 1822 and Cayley in 1845 gave the corresponding identity for eight squares,
see for example [6, p. 2]. Sums of three squares however cannot possess an analogous
composition law as 3 = 12 + 12 + 12, 5 = 02 + 12 + 22 but 15 = 3 · 5 �= x2 + y2 + z2

for integers x, y, z. Hurwitz proved in 1898 that there is an identity of the type

(x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n) = z2
1 + · · · + z2

n,

where the zk are bilinear functions of the xi and yi , if and only if n = 1, 2, 4, 8. Dickson
[2] gave a detailed, amplified form of Hurwitz’s proof in four pages. Rajwade [6] gave
an amplified version of Dickson’s proof in six pages. A proof using normed algebras
is given in [1]. For more on such laws see for example [6].

As 2 = 12 + 12 + 2 · 02, 7 = 12 + 22 + 2 · 12, and 14 = 2 · 7 �= x2 + y2 + 2z2 for
integers x, y, z there cannot exist a composition law of the type

(x2
1 + x2

2 + 2x2
3)(y2

1 + y2
2 + 2y2

3) = z2
1 + z2

2 + 2z2
3

with z1, z2, z3 bilinear functions of x1, x2, x3 and y1, y2, y3 with integer coefficients.
However every odd positive integer can always be expressed in the form x2 + y2 + 2z2

for some integers x, y, z, see for example [3, Theorem 86, p. 96], [4], [5, Theorem 1].

*Research of the second author was supported by National Sciences and Engineering Research Council of
Canada grant A-7233.



VOL. 80, NO. 2, APRIL 2007 143

Moreover one of x and y is odd and one is even. Thus every positive odd integer is of
the form

(2x1 + 1)2 + 2x2
2 + 4x2

3

for some integers x1, x2, x3. Let m and n be odd positive integers. Then mn is also an
odd positive integer and there exist integers x1, x2, x3, y1, y2, y3, z1, z2 and z3 such that

m = (2x1 + 1)2 + 2x2
2 + 4x2

3 ,

n = (2y1 + 1)2 + 2y2
2 + 4y2

3 ,

mn = (2z1 + 1)2 + 2z2
2 + 4z2

3.

Hence

((2x1 + 1)2 + 2x2
2 + 4x2

3)((2y1 + 1)2 + 2y2
2 + 4y2

3)

= (2z1 + 1)2 + 2z2
2 + 4z2

3.

The question naturally arises: Is this equality a consequence of some underlying com-
position law for the polynomial (2x1 + 1)2 + 2x2

2 + 4x2
3 ? In fact it is not, as can be

deduced from Hurwitz’s theorem. We show this directly from first principles without
recourse to Hurwitz’s theorem.

Suppose that there exist integers

a1, a2, . . . , a16, b1, b2, . . . , b16, c1, c2, . . . , c16

such that

((2x1 + 1)2 + 2x2
2 + 4x2

3)((2y1 + 1)2 + 2y2
2 + 4y2

3) (1)

= (2z1 + 1)2 + 2z2
2 + 4z2

3

is an identity in Z[x1, x2, x3, y1, y2, y3] with

z1 = a1x1 y1 + a2x1 y2 + a3x1 y3 + a4x2 y1 + a5x2 y2 + a6x2 y3 (2)

+ a7x3 y1 + a8x3 y2 + a9x3 y3 + a10x1 + a11x2 + a12x3

+ a13 y1 + a14 y2 + a15 y3 + a16,

z2 = b1x1 y1 + b2x1 y2 + b3x1 y3 + b4x2 y1 + b5x2 y2 + b6x2 y3 (3)

+ b7x3 y1 + b8x3 y2 + b9x3 y3 + b10x1 + b11x2 + b12x3

+ b13 y1 + b14 y2 + b15 y3 + b16,

z3 = c1x1 y1 + c2x1 y2 + c3x1 y3 + c4x2 y1 + c5x2 y2 + c6x2 y3 (4)

+ c7x3 y1 + c8x3 y2 + c9x3 y3 + c10x1 + c11x2 + c12x3

+ c13 y1 + c14 y2 + c15 y3 + c16.

We equate the coefficients of y2
3 , y3, x2 y2

3 , x2
2 , x2

2 y3, and x2
2 y2

3 in (1) (with z1, z2, z3

given by (2), (3), (4) respectively) to obtain the required contradiction. We have

[y2
3 ] 4a2

15 + 2b2
15 + 4c2

15 = 4

so

b15 = 0, (a15, c15) = (±1, 0) or (0, ±1); (5)
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[y3] 4a15(2a16 + 1) + 4b15b16 + 8c15c16 = 0

so by (5) and division by 4 we have

a15(2a16 + 1) + 2c15c16 = 0,

which forces a15 to be even and thus, by (5) again

a15 = 0, c15 = ±1; (6)

[x2 y2
3 ] 8a6a15 + 4b6b15 + 8c6c15 = 0

so by (5) and (6)

c6 = 0; (7)

[x2
2 ] 4a2

11 + 2b2
11 + 4c2

11 = 2

so

a11 = c11 = 0, b11 = ±1; (8)

[x2
2 y3] 8a6a11 + 4b6b11 + 8c6c11 = 0

so by (8)

b6 = 0. (9)

Finally we consider the coefficient of x2
2 y2

3 in (1). We have

4a2
6 + 2b2

6 + 4c2
6 = 8.

Appealing to (7) and (9) we obtain the required contradiction a2
6 = 2.

Panaitopol [5] has shown that the only diagonal ternary quadratic forms ax2 +
by2 + cz2 (1 ≤ a ≤ b ≤ c), which represent every odd positive integer are the forms
x2 + y2 + 2z2, x2 + 2y2 + 3z2, and x2 + 2y2 + 4z2. Our proof shows that the repre-
sentability of odd integers by x2 + y2 + 2z2 and x2 + 2y2 + 4z2 does not arise from an
underlying composition law. We leave it to the reader to show also that x2 + 2y2 + 3z2

does not possess such a composition law.

REFERENCES

1. A. A. Albert (editor), Studies in Modern Algebra, Vol. 2, MAA Studies in Mathematics, 1963.
2. L. E. Dickson, On quaternions and their generalizations and the history of the 8-square theorem, Annals of

Math. 20 (1919) 155–171.
3. L. E. Dickson, Modern Elementary Theory of Numbers, The University of Chicago Press, Chicago, Illinois,

1947.
4. I. Kaplansky, Ternary positive quadratic forms that represent all odd positive integers, Acta Arith. 70 (1995)

209–214.
5. L. Panaitopol, On the representation of natural numbers as sums of squares, Amer. Math. Monthly 112 (2005)

168–171.
6. A. R. Rajwade, Squares, London Mathematical Lecture Note Series 171, Cambridge University Press, 1993.


