Nonexistence of a Composition Law

ŞABAN ALACA
Carleton University
Ottawa, Ontario, Canada K1S 5B6
salaca@math.carleton.ca

KENNETH S. WILLIAMS*

Carleton University
Ottawa, Ontario, Canada K1S 5B6
kwilliam@connect.carleton.ca

It was known to the ancient Greeks that sums of two squares satisfy the composition law

$$
\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)=z_{1}^{2}+z_{2}^{2}
$$

with

$$
z_{1}=x_{1} y_{1}+x_{2} y_{2}, z_{2}=x_{1} y_{2}-x_{2} y_{1}
$$

and to Euler in 1770 that sums of four squares satisfy the composition law

$$
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right)=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}
$$

with

$$
\begin{aligned}
& z_{1}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}, z_{2}=x_{1} y_{2}-x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}, \\
& z_{3}=x_{1} y_{3}-x_{2} y_{4}-x_{3} y_{1}+x_{4} y_{2}, z_{4}=x_{1} y_{4}+x_{2} y_{3}-x_{3} y_{2}-x_{4} y_{1}
\end{aligned}
$$

Degen in 1822 and Cayley in 1845 gave the corresponding identity for eight squares, see for example [6, p. 2]. Sums of three squares however cannot possess an analogous composition law as $3=1^{2}+1^{2}+1^{2}, 5=0^{2}+1^{2}+2^{2}$ but $15=3 \cdot 5 \neq x^{2}+y^{2}+z^{2}$ for integers x, y, z. Hurwitz proved in 1898 that there is an identity of the type

$$
\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)=z_{1}^{2}+\cdots+z_{n}^{2}
$$

where the z_{k} are bilinear functions of the x_{i} and y_{i}, if and only if $n=1,2,4,8$. Dickson [2] gave a detailed, amplified form of Hurwitz's proof in four pages. Rajwade [6] gave an amplified version of Dickson's proof in six pages. A proof using normed algebras is given in [1]. For more on such laws see for example [6].

As $2=1^{2}+1^{2}+2 \cdot 0^{2}, 7=1^{2}+2^{2}+2 \cdot 1^{2}$, and $14=2 \cdot 7 \neq x^{2}+y^{2}+2 z^{2}$ for integers x, y, z there cannot exist a composition law of the type

$$
\left(x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+2 y_{3}^{2}\right)=z_{1}^{2}+z_{2}^{2}+2 z_{3}^{2}
$$

with z_{1}, z_{2}, z_{3} bilinear functions of x_{1}, x_{2}, x_{3} and y_{1}, y_{2}, y_{3} with integer coefficients. However every odd positive integer can always be expressed in the form $x^{2}+y^{2}+2 z^{2}$ for some integers x, y, z, see for example [3, Theorem 86, p. 96], [4], [5, Theorem 1].

[^0]Moreover one of x and y is odd and one is even. Thus every positive odd integer is of the form

$$
\left(2 x_{1}+1\right)^{2}+2 x_{2}^{2}+4 x_{3}^{2}
$$

for some integers x_{1}, x_{2}, x_{3}. Let m and n be odd positive integers. Then $m n$ is also an odd positive integer and there exist integers $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}$ and z_{3} such that

$$
\begin{aligned}
m & =\left(2 x_{1}+1\right)^{2}+2 x_{2}^{2}+4 x_{3}^{2}, \\
n & =\left(2 y_{1}+1\right)^{2}+2 y_{2}^{2}+4 y_{3}^{2}, \\
m n & =\left(2 z_{1}+1\right)^{2}+2 z_{2}^{2}+4 z_{3}^{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left(\left(2 x_{1}+1\right)^{2}+2 x_{2}^{2}+4 x_{3}^{2}\right)\left(\left(2 y_{1}+1\right)^{2}+2 y_{2}^{2}+4 y_{3}^{2}\right) \\
& \quad=\left(2 z_{1}+1\right)^{2}+2 z_{2}^{2}+4 z_{3}^{2} .
\end{aligned}
$$

The question naturally arises: Is this equality a consequence of some underlying composition law for the polynomial $\left(2 x_{1}+1\right)^{2}+2 x_{2}^{2}+4 x_{3}^{2}$? In fact it is not, as can be deduced from Hurwitz's theorem. We show this directly from first principles without recourse to Hurwitz's theorem.

Suppose that there exist integers

$$
a_{1}, a_{2}, \ldots, a_{16}, b_{1}, b_{2}, \ldots, b_{16}, c_{1}, c_{2}, \ldots, c_{16}
$$

such that

$$
\begin{align*}
& \left(\left(2 x_{1}+1\right)^{2}+2 x_{2}^{2}+4 x_{3}^{2}\right)\left(\left(2 y_{1}+1\right)^{2}+2 y_{2}^{2}+4 y_{3}^{2}\right) \tag{1}\\
& \quad=\left(2 z_{1}+1\right)^{2}+2 z_{2}^{2}+4 z_{3}^{2}
\end{align*}
$$

is an identity in $\mathbb{Z}\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right]$ with

$$
\begin{align*}
z_{1}= & a_{1} x_{1} y_{1}+a_{2} x_{1} y_{2}+a_{3} x_{1} y_{3}+a_{4} x_{2} y_{1}+a_{5} x_{2} y_{2}+a_{6} x_{2} y_{3} \tag{2}\\
& +a_{7} x_{3} y_{1}+a_{8} x_{3} y_{2}+a_{9} x_{3} y_{3}+a_{10} x_{1}+a_{11} x_{2}+a_{12} x_{3} \\
& +a_{13} y_{1}+a_{14} y_{2}+a_{15} y_{3}+a_{16} \\
z_{2}= & b_{1} x_{1} y_{1}+b_{2} x_{1} y_{2}+b_{3} x_{1} y_{3}+b_{4} x_{2} y_{1}+b_{5} x_{2} y_{2}+b_{6} x_{2} y_{3} \tag{3}\\
& +b_{7} x_{3} y_{1}+b_{8} x_{3} y_{2}+b_{9} x_{3} y_{3}+b_{10} x_{1}+b_{11} x_{2}+b_{12} x_{3} \\
& +b_{13} y_{1}+b_{14} y_{2}+b_{15} y_{3}+b_{16} \\
z_{3}= & c_{1} x_{1} y_{1}+c_{2} x_{1} y_{2}+c_{3} x_{1} y_{3}+c_{4} x_{2} y_{1}+c_{5} x_{2} y_{2}+c_{6} x_{2} y_{3} \tag{4}\\
& +c_{7} x_{3} y_{1}+c_{8} x_{3} y_{2}+c_{9} x_{3} y_{3}+c_{10} x_{1}+c_{11} x_{2}+c_{12} x_{3} \\
& +c_{13} y_{1}+c_{14} y_{2}+c_{15} y_{3}+c_{16} .
\end{align*}
$$

We equate the coefficients of $y_{3}^{2}, y_{3}, x_{2} y_{3}^{2}, x_{2}^{2}, x_{2}^{2} y_{3}$, and $x_{2}^{2} y_{3}^{2}$ in (1) (with z_{1}, z_{2}, z_{3} given by (2), (3), (4) respectively) to obtain the required contradiction. We have

$$
\left[y_{3}^{2}\right] 4 a_{15}^{2}+2 b_{15}^{2}+4 c_{15}^{2}=4
$$

so

$$
\begin{equation*}
b_{15}=0,\left(a_{15}, c_{15}\right)=(\pm 1,0) \text { or }(0, \pm 1) \tag{5}
\end{equation*}
$$

$$
\left[y_{3}\right] 4 a_{15}\left(2 a_{16}+1\right)+4 b_{15} b_{16}+8 c_{15} c_{16}=0
$$

so by (5) and division by 4 we have

$$
a_{15}\left(2 a_{16}+1\right)+2 c_{15} c_{16}=0
$$

which forces a_{15} to be even and thus, by (5) again

$$
\begin{equation*}
a_{15}=0, c_{15}= \pm 1 \tag{6}
\end{equation*}
$$

$$
\left[x_{2} y_{3}^{2}\right] 8 a_{6} a_{15}+4 b_{6} b_{15}+8 c_{6} c_{15}=0
$$

so by (5) and (6)

$$
\begin{equation*}
c_{6}=0 \tag{7}
\end{equation*}
$$

$$
\left[x_{2}^{2}\right] 4 a_{11}^{2}+2 b_{11}^{2}+4 c_{11}^{2}=2
$$

so

$$
\begin{aligned}
& a_{11}=c_{11}=0, b_{11}= \pm 1 \\
& {\left[x_{2}^{2} y_{3}\right] 8 a_{6} a_{11}+4 b_{6} b_{11}+8 c_{6} c_{11}=0}
\end{aligned}
$$

so by (8)

$$
\begin{equation*}
b_{6}=0 \tag{9}
\end{equation*}
$$

Finally we consider the coefficient of $x_{2}^{2} y_{3}^{2}$ in (1). We have

$$
4 a_{6}^{2}+2 b_{6}^{2}+4 c_{6}^{2}=8
$$

Appealing to (7) and (9) we obtain the required contradiction $a_{6}^{2}=2$.
Panaitopol [5] has shown that the only diagonal ternary quadratic forms $a x^{2}+$ $b y^{2}+c z^{2}(1 \leq a \leq b \leq c)$, which represent every odd positive integer are the forms $x^{2}+y^{2}+2 z^{2}, x^{2}+2 y^{2}+3 z^{2}$, and $x^{2}+2 y^{2}+4 z^{2}$. Our proof shows that the representability of odd integers by $x^{2}+y^{2}+2 z^{2}$ and $x^{2}+2 y^{2}+4 z^{2}$ does not arise from an underlying composition law. We leave it to the reader to show also that $x^{2}+2 y^{2}+3 z^{2}$ does not possess such a composition law.

REFERENCES

1. A. A. Albert (editor), Studies in Modern Algebra, Vol. 2, MAA Studies in Mathematics, 1963.
2. L. E. Dickson, On quaternions and their generalizations and the history of the 8 -square theorem, Annals of Math. 20 (1919) 155-171.
3. L. E. Dickson, Modern Elementary Theory of Numbers, The University of Chicago Press, Chicago, Illinois, 1947.
4. I. Kaplansky, Ternary positive quadratic forms that represent all odd positive integers, Acta Arith. 70 (1995) 209-214.
5. L. Panaitopol, On the representation of natural numbers as sums of squares, Amer. Math. Monthly $\mathbf{1 1 2}$ (2005) 168-171.
6. A. R. Rajwade, Squares, London Mathematical Lecture Note Series 171, Cambridge University Press, 1993.

[^0]: *Research of the second author was supported by National Sciences and Engineering Research Council of Canada grant A-7233.

