Subsequence Rational Ergodicity of Rank-One Transformations

Francis Bozgan*, Jane Wang**, Cesar Silva***

*UCLA, **Princeton University, ***Williams College

Weak Rational Ergodicity
- We consider standard Borel measure spaces, denoted (X, B, μ), where μ is a nonatomic σ-finite measure. We are interested in the case when μ is infinite.
- An invertible transformation $T: X \to X$ is said to be measurable if $T(A) \in B$ for all $A \in B$, and is said to be measure-preserving if $\mu(A) = \mu(T(A))$ for all such A.
- An invertible transformation $T: X \to X$ is said to be ergodic if $T^n(A) = A$ implies $\mu(A) = 0$ or $\mu(A) = 1$.
- Given an invertible, measure-preserving transformation T and a set $F \subseteq X$ of positive finite measure, define the intrinsic weight sequence of F to be $\nu(F) = \mu(T^n(F))/\mu(F)$. For the sum of these weights up to n we write $\nu_n(F) = \sum_{k=0}^{n-1} \nu_k(F)$.

A set F is said to sweep out $\mu(X)$ (up to 1) if
\[\mu(X) \leq \sum_{k=0}^{n-1} \nu_k(F). \]

Furthermore, we say that T is boundedly rationally ergodic if there exists an $F \subseteq X$ of positive finite measure that sweeps out such that
\[\limsup_{n \to \infty} \frac{\nu_n(F)}{\mu(X)} \leq 1. \]

If (2) holds only for a subset $(a_n) \subseteq \mathbb{N}$, then we say that T is subsequence boundedly rationally ergodic.

If F is finite, then any invertible ergodic transformation T, $X \to X$ is boundedly rationally ergodic. This is not true if μ is infinite.

Theorem (Aaronson ’79)
Bounded rational ergodicity implies weak rational ergodicity. Consequently, subsequence bounded rational ergodicity implies subsequent weak rational ergodicity.

Rank-One Transformations

We take a first column
- We consider standard Borel measure spaces, denoted (X, B, μ), where μ is a nonatomic σ-finite measure. We are interested in the case when μ is infinite.
- An invertible transformation $T: X \to X$ is said to be measurable if $T(A) \in B$ for all $A \in B$, and is said to be measure-preserving if $\mu(A) = \mu(T(A))$ for all such A.
- An invertible transformation $T: X \to X$ is said to be ergodic if $T^n(A) = A$ implies $\mu(A) = 0$ or $\mu(A) = 1$.
- Given an invertible, measure-preserving transformation T and a set $F \subseteq X$ of positive finite measure, define the intrinsic weight sequence of F to be $\nu(F) = \mu(T^n(F))/\mu(F)$. For the sum of these weights up to n we write $\nu_n(F) = \sum_{k=0}^{n-1} \nu_k(F)$.

A set F is said to sweep out $\mu(X)$ (up to 1) if
\[\mu(X) \leq \sum_{k=0}^{n-1} \nu_k(F). \]

Furthermore, we say that T is boundedly rationally ergodic if there exists an $F \subseteq X$ of positive finite measure that sweeps out such that
\[\limsup_{n \to \infty} \frac{\nu_n(F)}{\mu(X)} \leq 1. \]

If (2) holds only for a subset $(a_n) \subseteq \mathbb{N}$, then we say that T is subsequence boundedly rationally ergodic.

If F is finite, then any invertible ergodic transformation T, $X \to X$ is boundedly rationally ergodic. This is not true if μ is infinite.

Theorem (Aaronson ’79)
Bounded rational ergodicity implies weak rational ergodicity. Consequently, subsequence bounded rational ergodicity implies subsequent weak rational ergodicity.

Rank-One Transformations Cont’d

- A rank-one transformation is invertible, ergodic, measure-preserving and every positive finite measure set sweeps out the space

Proof of Theorem 1 Cont’d

\[
\sum_{k=0}^{n-1} \frac{\mu(T^n(F))}{\mu(F)} \leq \sum_{k=0}^{n-1} \nu_k(F) \leq 1
\]

Setting $\epsilon = \mu(F)/\mu(X)$, we satisfy the condition in (4).

Centralizer of a Rank-One Transformation

Let T be a conservative ergodic measure-preserving transformation. If T is subsequence weakly rationally ergodic and S is an invertible, nonmeasurable transformation in $C(T)$, then S is measure-preserving.

Sketch of the Proof

- It is well-known that if S is nonmeasurable and comes with T, then there exists a c such that $\mu(S) = c \cdot \mu(A)$ for all measurable $A \subseteq X$. Since T is subsequence weakly ergodic, there exists a set $F \subseteq X$ that sweeps out and a sequence $(a_n) \subseteq \mathbb{N}$ on which for all $A \subseteq F$

Theorem 2

Let T be a rank-one transformation and I be the level in C_{μ}. If for all $B \subseteq I$ and for a fixed n, we have that
\[\frac{1}{\nu_n(F)} \sum_{i=0}^{n-1} \nu_i(T^n(F)) \leq c \cdot \mu(B), \]

Then for each n, \[\frac{1}{\nu_n(F)} \sum_{i=0}^{n-1} \nu_i(T^n(F)) \leq c \cdot \mu(B). \]

Proof of Theorem 2

We fix an ϵ in our space and show that

\[
\frac{1}{\nu_n(F)} \sum_{i=0}^{n-1} \nu_i(T^n(F)) \leq \epsilon
\]

We notice that it suffices to show (6) holds for $\epsilon = 1$. For a μ-almost every ϵ, we have that

\[
\frac{1}{\nu_n(F)} \sum_{i=0}^{n-1} \nu_i(T^n(F)) \leq c \cdot \mu(B).
\]

Main Lemma

- Let T be a rank-one transformation and I be the level in C_{μ}. Then the sets $\{T^n(I)\}$ for $0 \leq n \leq \epsilon$ cover almost every point of I between $[I(D, m)]$ and $[I(D, m + 1)]$ times.

Proof of Theorem 1

By the previous lemma, since the sets $\{T^n(I)\}$ for $0 \leq n \leq \epsilon$ cover almost every point of I at most $2 \cdot [I(D, m)]$ times and at least $\lceil [I(D, m)] \rceil$ times, we get that

Further Questions

- We strongly believe that there should exist rank-one transformations with unbounded cuts that are weakly ergodic.
- Also, an example of a rank-one transformation that is not weakly ergodic would be very interesting to find. It should definitely have unbounded cuts by our theorem above.
- **Acknowledgements**

This paper is based on a joint work with Anthony Sanchez and David Stevens as part of the 2013 SMALL REU Ergodic Theory group. We want to thank Coit Sivis, our advisor at the SMALL REU, for his help and guidance during the research and after. We also want to thank the 2012 SMALL REU Ergodic Theory as this work is based on their research. Lastly, we would like to thank the National Science Foundation for funding our research.