The n-sided double cake is circumscribed by an n-sided right prism, whose basis is
the regular n-gon with apothem r, as shown in Figure 2. Thus the volume and surface
area of the circumscribing prism are given by

. . 2 T 3 T
V, = n-gon area - prism height = nr~ tan (—) - 2r = 2nr’ tan (—) 3)
n n

and

S, = 2n-gon area + n-gon perimeter - prism height “
= 2nr’ tan (z) + 2nr tan (E) - 2r

n n

= 6nr’ tan (Z) .
n

Formulas (1)—(4) imply that the ratio 2:3 = V,;.:V, = S4.:S, between volumes and
surface areas is valid for these objects for all n > 3.

Moreover, as n — oo, the n-sided doublecake tends to a sphere of radius r, while
the corresponding prism tends to its circumscribing cylinder. These limit processes fur-
nish alternative methods for computing the volume and surface area of a sphere. Both
limits involve the indeterminate form 7 sin(sr/n), with n tending to infinity, which
can be resolved using the basic trigonometric limit limgy_,((sin6)/0 = 1. Finally, these
limit processes generalize the calculus of the area of the circle as a limit of the areas
of circumscribed polygons. In fact, this limit occurs in the central cross section of the
doublecake.
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Pythagorean Triples with Square and Triangular Sides

Sharon Brueggeman (sharon-brueggeman @utc.edu), University of Tennessee at Chat-
tanooga, Chattanooga, TN 37403

Fermat [2] proved there are no Pythagorean triples in which the two smaller num-
bers (or legs) are both squares. On the other hand, Sierpinski [3] proved there are
infinitely many in which both legs are consecutive triangular numbers. We begin this
note by considering triples with one leg of each type, an example of which is (3, 4, 5)
where 3 = 1(2). (The nth triangular number is t (n) = n(n + 1)/2.)

The triple (5, 12, 13) does not have our property. Yet if we multiply it by 3, the
squarefree part of 12 = 22 - 3, we get (15, 36, 39) where 15 = ¢(5) and 36 = 6. In
general, we will take any Pythagorean triple with a square leg and multiply all three
numbers by an appropriate square (1 in this example) so that the other leg becomes
triangular.
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Let (a, b, ¢) be a Pythagorean triple and let B8 be the square-free part of ». Then
(Ba, Bb, Bc) is a Pythagorean triple with square leg Bb. We want to find squares y>
so that (y*Ba, y?Bb, y>Bc) is a Pythagorean triple and y?fa is a triangular number.
That is, we wish to find n so that y>8a = n(n + 1)/2. Rearranging gives the quadratic
equation 0 = n? 4+ n — 2y*Ba. Since n is an integer, the discriminant of this quadratic,
1 + 8y?Ba, must be a square, say x2, which gives a Pell’s equation x> — 88ay? = 1.

It is known that x> — dy* = 1 has infinitely many solutions if and only if d is not
a square. If there are solutions, the fundamental or smallest one (x;, y;) generates
all solutions from the rational and irrational parts of the powers (x; + ylﬂ)k for
k=72,3,....Itfollows that y, = 2x1y; and y;1 = 2x1y, — »—y fork =3,4,....

In our problem, d = 88a and we need to verify that d is not square. Suppose
that it is. Then the area of the triangle (Ba, b, fc) is %(,Ba)(,Bb) = %(S,Ba)(ﬂb) =
(1”’—6)(;%), a square. But Fermat proved that the area of a right triangle with integer
sides is never square [2]. So our assumption that d is square is false. Since x> —
8Bay* = 1 has infinitely many solutions, there are infinitely many squares that produce
Pythagorean triples with the desired property. We have proved the following theorem.

Theorem. Every Pythagorean triple has infinitely many multiples with the property
that one leg is square and the other leg is triangular.

For the example (5,12,13), B =3 and a = 5, so d = 120. The equation x> —
120y* = 1 has fundamental solution (11, 1). Applying the recursive formula, we
find that y, = 22 and y; = 483. We get triples (15 -22%,36 - 222,39 - 222) and
(15 - 4832,36 - 4832, 39 - 4832) with triangular numbers 15 - 22 = 7260 = 1(120)
and 15 - 4832 = 3499335 = ¢(2645).

Students can work out the second triple in the sequences for (3,4, 5) and (4, 3, 5).
The first gives (¢(24), 202, 500) while the second gives (1(24), 152, 375), showing that
the order of the legs is significant.

A special case arises from Pythagorean triples whose legs are consecutive integers.
See [1] for a description of infinitely many such triples. We will use the parametrization
of primitive triples given by (m* — n?, 2mn, m* + n?), where ged(m, n) = 1 and either
m or n is even.

Corollary. If (a,b,c) is a Pythagorean triple, b is even, and a — b = +1, then
(ab/4, b? /4, bc/4) is a Pythagorean triple in which ab /4 is a triangular number and
b*/4 is a square.

2

Proof. Suppose a = m* —n?, b = 2mn, and a — b = %1. Clearly b*/4 = m?n? is

square. It suffices to show that ab/4 is triangular. We have
ab/4 = (m* — n*)(mn/2) = (m — n)(m + n)(m)(n)/2 = (m* — mn)(n* + mn)/2,

where

_mn)— P+ mn)=m*—n*>=2mn=a—b = =+lI. [ |

(m

So far, we have constructed Pythagorean triples of the form (¢, s, x), where ¢, s and

x represent numbers which are triangular, are square, and have no restriction, respec-
tively. Similarly, every Pythagorean triple (a, b, ¢) has infinitely many multiples of
the forms (x, ¢, s) and (x, s, t). Both arguments proceed in the same manner except
that we cannot use the Fermat area to reach a contradiction. Assuming the Pell d is
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square leads to 2bc being square. Without loss of generality, assume (a, b, ¢) is prim-
itive and parametrize. Then by standard arguments, the parameters, m and n, are both
square. Finally, the square 2bc = 4mn(m? + n*) implies a solution to the unsolvable
x*+ y* = z2. Our original (¢, s, x) case can also be proved this way with the argument
ending at the unsolvable x* — y* = z? instead.

Many authors have considered similar problems. For example, Gerry Myerson no-
ticed the triple (272, 1(80), ¢(81)). Sierpinski found (¢(132), £ (143), £ (164)), the only
known (¢, ¢, t) example, as well as the infinite family of triples with consecutive trian-
gular legs like (¢(6), 1(7), 35). And R. P. Burn found many examples of (z, ¢, x) which
are not included in Sierpinski’s work such as (¢ (8), #(14), 111).
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Bernstein’s Examples on Independent Events

Czestaw Stepniak (cees @univ.rzeszow.pl), University of Rzeszéw, Rzeszéw, Poland

In 1946, S.N. Bernstein [1, p. 47] gave two examples showing that if the events in a
set are pairwise independent, they need not be jointly independent. In both examples,
the sample space has four outcomes, all equally likely. This raises the question of
whether there are smaller examples or others of the same size. In this note, we show
that the answer to both parts is that there are not. For the sake of simplicity, all of the
sample spaces we discuss are assumed to be finite and to have at least two outcomes,
with each outcome having positive probability.

We recall the key definitions. Given an experiment, two events A and B are inde-
pendent if P(AN B) = P(A)P(B). More generally, events A, A,, ..., A; are jointly
independent if P(A;; N A;, N---N A,~J.) = P(A;)P(A;) - P(A;) for every subset
{i1, iz, ... ,ij}of {1,2, ..., k}. Obviously, jointly independent sets are pairwise inde-
pendent.

What Bernstein’s examples show is that the converse is not true. For our version of
his first example [1, p. 47], we consider an urn containing four balls, numbered 110,
101, 011 and 000, from which one ball is drawn at random. Fori = 1, 2, 3 let A; be the
event of drawing a ball with 1 in the ith position. Thus, the three events are pairwise
independent. However, since A; N A, N A3 = &, they are not jointly independent.

In his second example, Bernstein used a tetrahedron with colored faces (one red, one
blue, one green, and one with all three colors). We give an equivalent example using
the same sample space as in the first example, but with events A, A,, and A; where
A; is the event of drawing a ball with a 0 in the ith position, not a 1. Note that each
P(A) = % and each P(A; NA;) = i for i # j, so the three events are again pairwise
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