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Most treatments of elementary abstract algebra include a discussion of finite groups 
and some work on their classification. However, very little is done with finite rings. 
For example most beginning texts state and prove the theorem that for p a prime the 
cyclic group of order p is the only group of order p up to isomorphism. Yet the 
equally striking and easily proved result that for a prime p there are only two rings of 
order p up to isomorphism is either not mentioned at all or relegated to the exercises. 

The purpose of this note is to give a complete classification of all finite rings of 
order p2 with p a prime. In particular, we show that up to isomorphism there are 
exactly 11 rings of order p2. The techniques are elementary and grew out of a project 
given to an undergraduate abstract algebra course. We use a concept called a ring 
presentation, which is an excellent computational tool for dealing with finite rings. 
After explaining this concept, we state our main result, Theorem 2 ,  which can be 
given as a large project to a good undergraduate class with guidance provided by the 
instructor. 

1. Presentation If R is a finite ring then its additive group is a finite abelian group 
and is thus a direct product of cyclic groups. Suppose these have generators 
g, ,  . . . , gk of orders m , ,  . . . ,m k .  Then the ring structure is determined by the k 2  
products 

k 


g i g j = C c f j g ,  with cfj E Z m t  (1) 
t = l  

and thus by the k 3  structure constants cfi We introduce a convenient notation, 
motivated by group theory, for giving the structure of a finite ring. A presentation for 
a finite ring R consists of a set of generators g, ,  . . . , gk of the additive group of R 
together with relations. The relations are of two types: 

(i) mig,  = 0 for i = 1,. . . ,k indicating the additive order of g i ,  and 

k 


(ii) g i g j = C c & g ,  with cf j  E Z m t  
t = l  

for i = l ,  . . . ,k ;  j = l ,  . . . ,k ;  t = l ,  . . . ,k .  
If the ring R has the presentation above we write 

k 

R , . . , g k ;  m g ,  = O for i = 1 , . . . k ,  gigr = C c;jgi 

i = l  

For example the ring Z 2  + Z 2 =  ( a , b ;  2 a = 2 b  = 0 ,  a 2 = a ,  b 2 = b ,  ab = b a = O ) ,  
while the finite field of order 4 is ( a ,  b ;  2 a  = 2 b  = 0 ,  a2  = a ,  ab = b ,  b 2  = a  + b ) .  
Notice that if the additive group is cyclic with generator g ,  the ring structure is 
completely determined by g 2 . Therefore the ring Z ,  = ( a ;  4 a  = 0 ,  a2 = a ) .  

Finally if a relation follows by applying the ring properties to other relations, we 
delete it. For example suppose that a ring R is generated by a and b having prime 
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additive orders p and 9.  If a2= O and b 2= 0 it follows that ab = 0 and ba = 0 ,  so 
these relations are deleted. To see this last fact notice that if ab = ta + ub then 
a2b = O = ta2 + uab = uta + u2b .  Since a ,  b constitute an additive basis it follows that 
u 2  = O (mod 9 )  and since 9 is a prime we must then also have u = 0 (mod 9 ) .  
Similarly, by calculating ab2 we deduce that t = 0 (mod P) .  

2. Cyclic additive groups We first present a result that characterizes rings with 
cyclic additive groups. This appeared in [2]. 

THEOREM1. The number of rings R ,  up  to isomorphism, with cyclic additive group 
C,,, is given by the number of divisors of m .  In particular, for each divisor d of m 
there is a ring RCl= ( g ;  mg = 0 ,  g = dg ) where g is an additive generator of C,. 
For diferent d ' s  these rings are nonisomorphic. 

ProoJ: Let R be a ring with additive group C,,, and let g be an additive generator 
of C,,. Suppose g 2  = ng. If ( m ,  n )  = 1 then n has an inverse k modulo m so that 
nk = 1 (mod m ) .  Let g ,  = kg. Since k is a unit in Z,, g ,  is also an additive generator. 
Now gf = ( k g ) %= k 2 g 2= k 2 ( n g )= k ( k n g )  = k g  = g,. So the homomorphism from R 
to Z,,, defined by gl -+ 1 is an isomorphism. Therefore in this case R = R ,  is 
isomorphic to Z,,. 

Suppose g 2  = 0. Then all the multiplication is trivial and in this case R = R,, is 
isomorphic to the ring with additive group C, and trivial multiplication. These two 
possibilities correspond to the divisors 1 and m of m .  

Now let d be a proper divisor of m with m = kd and suppose g 2  = k g .  Observe 
that kg generates a unique additive cyclic subgroup of order d .  The generators of this 
subgroup are (jk )g where j = O,1,. . . ,d - 1 and (j ,  d )  = 1. We show that for any 
j = 0 , 1 , . . . ,d - 1 and ( j ,  d )  = 1, R is isomorphic to ( g , ;  mg ,  = 0 ,  gf = ( j k l g , )  for 
some generator gl of C,,,. To do so, we show that there is an n with ( m ,  n )  = 1 such 
that if g ,  = ng then gf = ( j k ) g,.Since ( n ,  m )  = 1, g ,  is then an additive generator 
and the map g -+ g ,  gives the desired isomorphism. 

Suppose g ,  = ng with n to be determined. Then gf =n 2 g 2= ( n 2 k ) g .If this is to 
equal (j k l g ,  = ( j k n ) g  we are led to the congruence: 

( I )  kn2 =jkn (mod m ) ,with n the variable. 

Assuming n is to be a unit mod m ,  we get 

( 2 )  kn  =jk (mod m )  

The solutions modulo m are n =j + td with t = 0 ,1 , . . . ,k - 1. Since ( j ,  d )  = 1, by 
Dirichlet's theorem there exists a solution such that j + td is prime to m .  This 
solution n of ( 2 )  is then a unit mod m and gives the indicated n .  

Thus the rings with additive groups C,, and generator g such that g2  = ( j k ) g  
with kd =m and ( j ,  d )  = 1 all fall in one isomorphism class. 

Notice further that if g 2  = kg and ( j ,  d )  # 1, then for any solution to ( 1 ) or ( 2 ) we 
would have ( j  + t d ,  m )  # 1 and therefore there is no unit solution. This implies that 
there exists no additive generator g ,  such that gf = ( j k ) g ,  and thus no isomor-
phism. Therefore the rings whose presentations are given in terms of divisors of m of 
different additive orders are precisely the isomorphism classes. This completes the 
proof of the theorem. 

We immediately have the following corollaries classifying rings of prime order and 
rings of order p9 where p and 9 are distinct primes. For an abelian group G we let 
G(0) denote the ring with additive group G and trivial multiplication. 
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COROLLARY1. If p is a prime there are, up  to isomorphism, exactly two rings of 
order p, namely Z ,  and C,(O). 

COROLLARY2. If p and q are distinct primes there are, up to isomorphism, exactly 
four rings of order pq. These are Z,,, C,,(O), C,(O) + Z,, and Z ,  + C,(O). 

More generally if n is a square-free positive integer and R is a ring of order n ,  
then the additive group of R must be cyclic. The following corollary follows 
immediately. 

COROLLARY3. If n = p, . . . pk is a square free positive integer with k distinct prime 
divisors then there are, up to isomorphism, exactly 2 k  rings of order n .  

3. Rings of order p 2  We now give our main result. Notice that if a ring has order 
p2 then its additive group is either C,z or C, x C,. 

THEOREM2. For any prime p there are, up to isomorphism, exactly 11 rings of 
order p2. Specijically these are given by the following presentations: 

A = ( a ;  p2a = 0 ,  a2 = a )  = Z,z 

B = ( a ;  p2a = 0 ,  a2 = p a )  

C = ( a ;  p2a = 0 ,  a2 = 0 )  = C,z(O) 

D = ( a , b ;  p a = p b = O ,  a 2 = a ,  b 2 = b ,  a b = b a = O ) = Z , + Z ,  

E = ( a , b ;  p a = p b = 0 , a 2 = a , b 2 = b , a b = a , b a = b )  

F = ( a , b ;  p a = p b = O ,  a 2 = a ,  b 2 = b ,  a b = b ,  b a = a )  

G = ( a , b ;  pa=pb=O,  a 2 = 0 ,  b 2 = b ,  a b = a ,  b a = a )  

H = ( a ,  b ;  pa = pb = 0 ,  a2 = 0 ,  b 2  = b ,  ab =ba = 0 )  = Z ,  + C,(O) 

K = G F ( p 2 )  =finite field of order p2 

( a , b ;  pa = p b  = 0 ,  a 2 = a ,  b 2 = j a ,  ab = b ,  b a =  b )  
where j is not a square in Z,, if p f 2 .  

( a , b ; 2 a = 2 b = O ,  a 2 = a ,  b 2 = a + b ,  a b = b ,  b a = b ) ,  i f p = 2 .  

Proof Let R be a ring of order p2. Then the additive group is isomorphic to C,Z or 
C, X C,. If the additive group is C,Z then from Theorem 1there are three rings up to 
isomorphism whose presentations are given by: 

A = ( a ;  p2a = 0 ,  a2 = a )  = Z,z 

B = ( a ;  p2a = 0 ,  a2 = p a )  


C = ( a ;  p2a = 0 ,  a2 = 0 )  = C,z(O) 


We now concentrate on rings whose additive group is C, X C,. In this case R is a 
vector space of dimension 2 over the finite field Z,. Therefore if a' and b' are 
additive generators of R and a = xu' + yb', b =wa' + zb', then a and b are also 
additive generators whenever xzu - zy z 0 (mod p). 
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To obtain the complete classification we show that given a set of additive genera- 
tors a' and b' for R there exists a (possibly distinct) set of generators a and b such 
that R equals D, E ,  F, G, H, I, J ,  or K .  At the same time we show that no two of 
these rings are isomorphic. This procedure involves an enumeration of cases involving 
a and b. These cases, in turn, break into two large groups. In the first R contains a 
set of additive generators a and b whose squares a2 and b2 are multiples of 
themselves-that is a2 =ma and b2= nb with m ,  n  in Z,. ( m  or n or both may be 
zero.) In the second set of cases R has no set of additive generators whose squares 
are multiples of themselves. We present part of the first set of cases in detail to 
illustrate the process and then sketch the remainder. 

Suppose first that there exist generators a and b such that a2 =ma, b2 =nb, 
m $ 0  (mod p), and n $ 0 (mod p ) .  Then a and b generate subrings of R isomorphic 
to Z , .  Thus without loss of generality we may assume that m =n = 1so that we have 
generators a and b with a2= a and b2= b. Suppose then that ab = ta +ub. Then 
a2b= ab = ta2+ uab = ( t + ut)a + u2b= ta + uh. It follows that u2 =u (mod p )  so 
that u - O (mod p )  or u = 1(mod p).  

Similarly by considering ab2= ab we see that t 2= t (mod p), hence either t - 0 
(mod p )  or u =- 0 (mod p ) .  This gives four possibilities for (t ,  u )  namely (0,O), (1, O), 
(O,l), or (1,l) .  

I f ( t , u ) = ( l , l )  then a b = a + b .  Then a 2 b = a b = a ( a + b ) = a 2 + a b = 2 a + b f  
a + b = ab. Therefore the case t = 1, u = 1 is impossible and so there are only three 
possibilities for (t ,  u); namely (O,O), (1,0), and (0,l) .  

By a symmetrical argument if ba = xu + yb there are three possibilities for (x,y) 
again; namely (0, O), (1, O), and (O,1). Thus if a2= a and b2= b there are nine 
possibilities for ab and ba. 

Case 1, a2= a, b2  =b,  ab = 0, ba = O. In this case R = D = ( a ,  b  : pa =pb = 0, 
a2 = a ,  b2 = b,  ab = ba = O), and so R is isomorphic to Z, + Z, under the map 
a + (l,O), b + (0,l) .  

Case 2. R = ( a ,  b :  pa =pb = 0, a2 = a, b2 =b,  ab = a ,  ba = a ) .  This is isomor- 
~ h i cto Z, + Z,, which we denoted D under the map a + (1,O), b  + (1,l) .  

Case 3. R = ( a , b : p a = p b = O ,  a 2 = a ,  b 2 = b ,  a b = b ,  b a = b ) .  This case is 
symmetric to case 2 above and therefore this R is also isomorphic to D = Z, + Z,. 

Case 4. R = ( a ,  b  : pa =pb = 0, a2 = a, b2 = b,  ab = a, ba = 0 ) .  In this case 
aba = a2= a # 0 since a is a generator. However aba = a  .O = 0 and so this case is 
impossible. 

By the same arguments the following three cases are impossible. 

Cases. R = ( a , b : p a = p b = O ,  a 2 = a ,  b 2 = b ,  a b = b ,  ba=O).  

Case6. R = ( a , b : p a = p b = O ,  a 2 = a ,  b 2 = b , a b = 0 ,  b a = a ) .  

Case 7. R = ( a , b : p a = p b = O ,  a 2 = a ,  b 2 = b ,  ab=O, b a = b ) .  
We now consider 

Case 8. R = ( a ,  b  : pa =pb = 0, a2 = a, b2 =b,  ab = a, ba = b ) .  This is a legiti- 
mate possibility in which R is not isomorphic to Z, + Z, since R is noncommutative. 
We call this new ring E. 

The final case is the following: 

Case 9. R = ( a ,  b :  pa =pb = 0, a2= a, b2 =b,  ab =b,  ba = a ) .  This R is not 
isomorphic to Z, + Z, since R is noncommutative. We claim that R is also not 
isomorphic to E. Call this ring F. We show that there are no elements in F that 
satisfy the relations of ring E. Let A = ma + nb where at least one of m and n is 
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nonzero. Suppose A2 = A .  Using the relations in F ,  we have (m2 +mn)a + 
(n2+mn)b = ma + nb. This implies that m2+ mn = m (mod p )  and n2+mn = n 
(mod p). If m = 0 then n2=n and so n = 1. Similarly, if n = 0 then m = 1. If m # 0 
then m(n + m ) =M ,  and so n + m = 1. Therefore if A2 =A we must have A = a or 
A =b or A = na + (1- n)b for some n # 0, 1. Similarly, if B is independent from A,  
we must have either B = a or B = b or B = xa + (1- x)b for some x # 0, 1. In case 
A = a and B = b ,  AB = ab = b # A ,  and so A and B do not satisfy the relations of E. 
Similarly in case A = b and B = a. In case A = a and B = xa + (1- x)b with x 0, 
1, AB = a(xa + (1- x)b)= xu2+ (1- x)ab = xa + (1- x)b = B # A, and so A and 
B do not satisfy the relations of E.  The result is similar in case A = b and 
B = xa + (1- x)b, in case B = a and A = na + (1- n)b ,  and in case B = b and 
A =na + (1-n)b. Therefore the only case in which we could get the ring E is the 
one in which A = na + (1- n)b  for some n # 0, 1 and B = xa + (1- x)b for some 
x # 0, 1. Suppose then that AB =A as it would be in E. By computing we find that 
AB also equals B, and so A = B, which contradicts the fact that A and B are 
independent. Therefore F is not isomorphic to E. Thus F is another ring with 
additive group C, x C,. 

Cases 1 through 9 describe the possibilities in which a2= a and b2= b and give 
us three additional nonisomorphic rings D,  E, and F. 

We now sketch the remainder of the proof. The details are carried out as in the 
above cases-possible presentations for R are identified and then shown to either 
equal a ring that is isomorphic to one already on the list or to be a new nonisomorphic 
ring. 

For instance, consider the situation in which R has a set of additive generators a 
and b with one of their squares zero and the other a multiple of itself. If a2= O and 
b2= b ,  two new nonisomorphic rings, G and H, are obtained: 

G = ( a , b ;  pa=pb=O, a 2 = 0 ,  b 2 = b ,  a b = a ,  b a = a )  


H = ( a , b ; p a = p b = 0 , a 2 = 0 ,  b 2 = b ,  ab=O, ba=O).  


G is commutative and H is isomorphic to Z ,  + C,(O). 
In the final situation R has no set of two independent generators whose squares are 

both nonzero multiples of themselves. If R has a generator a with a2= b and b 
independent from a, then an enumeration of cases leads to two new additional 
nonisomorphic rings, I and K:  

I = ( a , b ; p a = p b = 0 , a 2 = b , a b = O )  

In both cases K is precisely the finite field GF(p2). 
If R has two generators both of whose squares are trivial, then the multiplication is 

trivial and so R = C, X Cp(0)=J .  
We mention in closing that the group ring Z,(C2), which also has order p2 ,  is 

isomorphic to Z ,  + Z,. Identifying 1 in Z ,  with the generator a and the group 
generator of C2 with b shows that the group ring has the presentation ( a ,  b;  
pa =pb = 0, a2 = a, b2 = a, ab = b,  ba = b ) .  The map a + (1,-11, b + (1,-1) 
gives the desired isomorphism. 
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