Euler-Cauchy Using Undetermined Coefficients

Doreen De Leon (doreendl@csufresno.edu), Department of Mathematics, California State University–Fresno, Fresno CA 93740-8001 doi:10.4169/074683410X488728

The Euler-Cauchy equation is often one of the first higher order differential equations with variable coefficients introduced in an undergraduate differential equations course. Putting a nonhomogeneous Euler-Cauchy equation on an exam in such a course, I was surprised when some of my students decided to apply the method of undetermined coefficients, which is guaranteed to work only for constant-coefficient equations, and obtained the correct answer! It turns out that we can find a particular solution to this equation using a substitution similar to the standard method of undetermined coefficients, if the right-hand side function is of a certain type, without using variation of parameters or transforming the equation to a constant-coefficient equation and then applying undetermined coefficients.

Such a solution is possible because of the fact, mentioned in many differential equations textbooks, that the Euler-Cauchy equation may be transformed by a change of variables into a constant-coefficient equation by simply defining \(t = e^z \), if we assume \(t > 0 \). Thus, if the right-hand side function \(f(t) \) is a monomial, then \(f(e^z) \) is an exponential function; or if the right-hand side function \(f(t) \) is the product of a monomial and a nonnegative integer power of \(\ln(t) \), then \(f(e^z) \) is the product of a monomial and an exponential function. And, since the new equation is a constant-coefficient equation, the method of undetermined coefficients can be applied, prescribing a solution that is an exponential function, in the first case, and the product of a polynomial and an exponential function in the second case. This leads to a method of undetermined coefficients for the original equation.

First, consider the second order Euler-Cauchy equation with a monomial right-hand side function,

\[
t^2 y'' + aty' + by = At^\alpha, \quad t > 0.
\]

(1)

If we suppose that \(\alpha \in \mathbb{R} \) is not a root of the characteristic equation, then the above discussion indicates that we should try as our particular solution \(y_p = Ct^\alpha \). Plugging \(y_p \) into (1) gives

\[
(\alpha(\alpha - 1) + a\alpha + b)Ct^\alpha = At^\alpha.
\]
Since we have assumed that \(t > 0 \) and \(\alpha \) is not a root of the characteristic equation, we can solve directly for \(C \).

But, what if \(\alpha \) is, in fact, a root of the characteristic equation? As mentioned above, the Euler-Cauchy equation can be transformed into a constant-coefficient equation by means of the transformation \(t = e^z \). This means that our first guess for the particular solution would be \(y_p(z) = Ce^{\alpha z} \). But, since \(\alpha \) is a root of the characteristic equation, we need to multiply by \(z \) until \(y_p(z) \) is no longer a solution to the complementary equation. Multiplication by \(z \) in the guess for the particular solution for the transformed equation translates into multiplication by \(\ln(t) \) in the particular solution for (1), suggesting a particular solution of the form of a constant multiple of \(t^\alpha \) and a power of \(\ln(t) \). We can verify by direct substitution that this is the correct form of the solution.

These ideas are summarized in the following theorem.

Theorem 1. For the second order Euler-Cauchy problem,

\[
t^2y'' + aty' + by = At^\alpha, \quad t > 0,
\]

where \(\alpha \in \mathbb{R} \), a particular solution is of the form

(i) \(y_p(t) = Ct^\alpha \), provided that \(\alpha \) is not equal to any root of the characteristic equation, or

(ii) \(y_p(t) = Ct^\alpha (\ln(t))^i \), if \(\alpha \) is equal to a root of the characteristic equation, where \(i \) is the multiplicity of the root.

For the more complicated equation

\[
t^2y'' + aty' + by = At^\alpha (\ln(t))^n, \quad t > 0,
\]

where \(\alpha \in \mathbb{R} \) and \(n \) is a nonnegative integer, a similar analysis leads to the following theorem.

Theorem 2. For the second order Euler-Cauchy problem,

\[
t^2y'' + aty' + by = At^\alpha (\ln(t))^n, \quad t > 0,
\]

where \(\alpha \in \mathbb{R} \) and \(n \) is a nonnegative integer, a particular solution is of the form

\[
y_p(t) = (C_0 + C_1 \ln(t) + \cdots + C_n (\ln(t))^n) t^\alpha.
\]

In fact, the above method will lead to a solution using undetermined coefficients for the following types of functions, as well:

1. \(A \cos(k \ln t) \) or \(A \sin(k \ln t) \),
2. \(At^\alpha \cos(k \ln t) \) or \(At^\alpha \sin(k \ln t) \), and
3. \(At^\alpha (\ln(t))^n \cos(k \ln t) \) or \(At^\alpha (\ln(t))^n \sin(k \ln t) \).

You should, of course, verify this.

By the principle of superposition, the above results can be applied to Euler-Cauchy equations whose right-hand sides are sums of such functions, simply by applying the appropriate result to each term on the right-hand side. Here is an example.

Example. Find a general solution of \(t^2y'' - 4ty' + 4y = 4t^2(\ln(t))^2 - t, \quad t > 0 \).
• Complementary solution: Solve \(t^2 y'' - 4ty' + 4y = 0 \) to obtain \(y_c = c_1 t + c_2 t^4 \).

• Particular solution: Find a solution of \(t^2 y'' - 4ty' + 4y = 4t^2(\ln(t))^2 - t \).

The particular solution takes the form \(y_p = y_{p1} + y_{p2} \). Since the first function is \(4t^2(\ln(t))^2 \), by Theorem 2 the first component of \(y_p \), \(y_{p1} \), is \((A + B(\ln(t)) + C(\ln(t))^2) t^2 \). The particular solution corresponding to the second function, \(t \), is determined using Theorem 1. Since 1 is a simple root of the characteristic equation, the second component of \(y_p \), \(y_{p2} \), is \(Dt \ln(t) \). So, \(y_p = (A + B(\ln(t)) + C(\ln(t))^2) t^2 + Dt \ln(t) \). Plug \(y_p \) into the differential equation, collect terms, and equate coefficients to obtain \(A = -3, B = 2, C = -2, \) and \(D = \frac{1}{3} \), so

\[
y_p = (-3 + 2 \ln(t) - 2(\ln(t))^2) t^2 + \frac{1}{3} t \ln(t).
\]

General solution: \(y = y_c + y_p \), so

\[
y(t) = c_1 t + c_2 t^4 + (-3 + 2 \ln(t) - 2(\ln(t))^2) t^2 + \frac{1}{3} t \ln(t).
\]

It is straightforward to generalize the approach described in this paper to higher order Euler-Cauchy equations.

Acknowledgments. The author gratefully acknowledges the assistance of the editors in revising this manuscript.

Summary. The Euler-Cauchy equation is often the first higher order differential equation with variable coefficients introduced in an undergraduate differential equations course. Putting a non-homogeneous Euler-Cauchy equation on an exam in such a course, I was surprised when some of my students decided to apply the method of undetermined coefficients, supposedly guaranteed to work only for constant-coefficient equations, and obtained the correct answer! It turns out that a particular solution to this equation has a form similar to that of standard undetermined coefficients, if the right-hand side function is of a certain type. Thus the Euler-Cauchy equations can be solved without using variation of parameters or a substitution transforming the equation to a constant-coefficient equation.

Suspension Bridge Profiles

C.W. Groetsch (charles.groetsch@citadel.edu), The Citadel, Charleston SC 29409-6420 doi:10.4169/074683410X488737

The shape of a uniform flexible cable hanging by its own weight—the catenary—is an historically significant topic in an elementary differential equations course, often deemed too specialized for a first calculus course. However, the conceptually simpler case of a heavy uniform horizontal roadbed or deck suspended from a cable of insignificant mass—leading to a parabolic profile—is more tractable and can profitably be presented in the calculus classroom (e.g., [3]). Here we treat the slightly more general problem of a non-uniform deck, characterize the shape of the suspension cable, reveal the catenary to be a special case, and illustrate some other interesting properties of this model.