Schur Positivity of Differences of Products of Schur Functions
 MSRI - UP Mathematical Sciences Research Institute

Jeremiah Emidih, University of California Riverside Jeremy Meza, Carnegie Mellon University

Nadine Jansen, North Carolina A\&T State University Advisor: Dr. Rosa Orellana, Dartmouth College

Abstract

The Schur functions s_{λ} are a basis for the ring of symmetric functions indeved by partitions of nonnegative integers. A symmetric function is called Schur positive if when expressed as a linear combination of Schur functions, each coefficient is nonnegative. We investigate expressions of the form

$$
s_{\lambda} s_{\lambda^{c}}-s_{\mu} s_{\mu}
$$

where λ partitions n and μ partitions $n-1$ and the complements λ^{c}, μ^{c} are taken over a sufficiently large $m \times m$ square. We first give a necessary condition for when this expression is Schur positive. We then provide symmetries and equivalences involved in the Schur positivity of our expression. Lastly, we incorporate the Littlewood Richardson rule to conjecture a full characterization
of when $s_{\lambda} s_{\lambda^{c}}-s_{\mu} s_{\mu}$ is Schur positive.

Preliminaries

1 Partitions and Young Diagrams
A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ of a positive integer n is a weakly decreasing list of non-negative integers so that
the sum of the elements is n. We use Young diagrams to visualize partitions: $(4,3,1) \vdash 8 \rightarrow \square$
A Young tableau is a Young diagram with positive integers entered in the boxes. A semistandard Young tableau (SSYT) is a special type of tableau where the numbers are arranged weakly increasing along rovs and strictly increasing a.

$\frac{13+22^{2}}{\frac{13}{6}} \frac{4.4}{6}$ has type $(2,2,1,1,1,1)$ and shape $(4,3,1)$

Operations on λ :
\bullet conjugate
(
conjugate (λ^{\prime}): partition obtained by transposing λ like a matrix

- complement $\left(\lambda^{c}\right)$: partition obtained by taking all the remaining boxes in a rectangle that fits aroun
- containment: $\mu \subseteq \lambda$ if Young diagram of μ fits inside Young diagram of λ.

$$
\begin{array}{c|c|c}
\text { Partition } & \text { Conjugate } & \text { Complement (in } 3 \times 3 \text {) } \\
\hline \square \square & \exists & \square
\end{array}
$$

If $\mu \subseteq \lambda$, we say λ / μ is the skew shape formed by removing μ from top left corner of λ.
\square
Given a SSYT T, define

- reverse reading word $\mathrm{rw}(\mathrm{T})$: word $a_{1} a_{2}, \ldots a_{p}$ obtained by reading the integers in T from right to left
- lattice permutation: word with at least at many occurrences of i as $i+1$ in subword $a_{1} \ldots a_{l}$ for all - lattice per

A Littlewood-Richardson Tableau (LRT) is a skew semistandard tableau in which the reverse reading word is a lattice permutation.
is a LRT of shape $(4,3,2,1) /(2,1)$, type $(3,2,2), r w(T)=1121323$

2 Schur Functions

A symmetric function is invariant under any permutation that permutes only y finite number of variables
e.g. $f\left(x_{1}, x_{2}, \ldots\right)=x_{1}+x_{2}+\ldots$ A chur function is a symmetric function, indexed by a partition λ, given
by

 $C_{(2,1),(3,2,1)}^{(4,2)}=2$, since 2 LRT's of shape $(4,3,2) /(3,2,1)$ and type $(2,1)$

Our Problem

Let $\lambda \vdash n$ and $\mu \vdash n-1$. Let all complements be taken in an $m \times m$ box. When is $s_{\lambda} s_{\lambda}^{c}-s_{\mu} s_{\mu}^{c}$ Schur positive?

Results

1 A Necessary Condition for Schur Positivity: Containment

Proposition 1.1. $s_{\lambda} s_{\lambda^{c}}-s_{\mu^{\prime}} s_{\mu^{c}}$ is Schur positive $\Longrightarrow \mu \subseteq \lambda$

- Q: If $\lambda=\square$, what are the possibilities of $\mu \vdash 5$ such that $s_{\lambda} s_{\lambda^{c}}-s_{\mu} s_{\mu^{c}}$ could be Schur positive?
- A: $\square \quad \square \quad \square$

If $\mu \subseteq \lambda$, leads us to

Definition 1.2. (λ, μ) is a paired k-hook if $\mu \subseteq \lambda$ and

1. $\mu_{k}=\lambda_{k}-1$
2. $\mu_{j}=\lambda_{j}$ for all $j \neq k$

- $(\lambda, \mu)=\square \quad$ is a paired 2-hook

[^0]2 Symmetries and Equivalences

- Cases where $\mu \subseteq \lambda$, but $s_{\lambda} s_{\lambda^{-}}-s_{\mu} s_{\mu}$ is not Schur positive

or all $m \geq 2 \max \left\{\lambda_{1}, \ell(\lambda)\right\} \Longleftrightarrow$ (λ, μ) is (not) Schur positive for $m=2 \max \left\{\lambda_{1}, \ell(\lambda)\right\}$ Proposition 2.2. (λ, μ) Schur positive $\Leftrightarrow\left(\lambda^{\prime}, \mu^{\prime}\right)$ Schur positive

3 Sufficient Conditions
The goal is to characterize when any paired k-hook is Schur positive. We conjecture the following:

```
Conjecture 3.1. Let (\lambda,\mu) be a paired k-hook and let m\geq2max{\mp@subsup{\lambda}{1}{},\ell(\lambda)}. Then,
```

$s_{\lambda^{\prime} s_{\lambda^{-}}-s_{\mu} s_{\mu^{\kappa}} \text { is Schur positive } \Leftrightarrow \mu_{k-j}-\mu_{k}>\mu_{k}-\mu_{k+j} \quad \text { for all } 1 \leq j<k}$

We have proven the forward implication, but the backwards implication remains to be proven.

Future Work

- Complete the proof of (1).
- Reduce our bound of $m \geq 2 \max \left\{\lambda_{1}, \ell(\lambda)\right\}$
- Explore the case when $\lambda \vdash n$ and $\mu \vdash p$ for $p \leq n$

Acknowledgements

We would like to acknowledge Dr. Rosa Orellana, Samuel Ivy, Dr. Ivelisse Rubio, and the MSRI staff. This work was conducted at the MSRI-UP and and the National Science Foundation (NSF) grant 1156499.

[^0]: Notation 1.3. Write " (λ, μ) Schur positive" to mean
 $s_{\lambda} s_{\lambda^{c}}-s_{\mu} s_{\mu^{c}}$ is Schur positive.

