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Fibonacci Numbers and the Arctangent
Function
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This note provides several geometric illustrations of three identities involving the arc-
tangent function and the reciprocals of Fibonacci numbers. The Fibonacci numbers are
defined by Fy =0, F; = 1,and F,, = F,_,; + F,_,, for n > 1. The following identities
link the Fibonacci numbers to the arctangent function. Only the first is evident in the
literature [1, 2, 3].
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arctan (F_2,> = arctan <F2i+l ) + arctan (in+z> (1)
arctan < 2 ) = arctan ( ! ) + arctan ( ! ) ©3)
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arctan (L) = arctan ( 2 ) + arctan ( ! ) 3)
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Identities (1)—(3) can be proven formally using Cassini’s identity [1, p. 127]

Fk2+| = Fka+2 + (—l)k
and the addition formula for the tangent function. Interested readers are invited to do
SO.

The following six diagrams illustrate special cases of equations (1)—(3). FIGURE 1,
a representation of Euler’s famous formula for 7 [4, 5], illustrates (1) for i = 1. One
can see that ZABD plus ZDBC is equal to ZABC.
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Figure 1 % =arctan(1) = arctan(%) + arctan(%)

FIGURE 2 illustrates (1) for i = 2, using the larger squares to form the arctangent
of 1/5 and the smaller squares being used to form the arctangents of 1/3 and of 1/8.

The two diagrams in FIGURE 3 illustrate (2) for the values i = 1 and i = 2.

The diagrams in FIGURE 4 illustrate equation (3) for the values i = 1 and i = 2.
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Figure 2 arctan(3) = arctan($) + arctan(y)

Figure 3 arctan(3) = arctan(§) + arctan(}); arctan(}) = arctan(1) + arctan(5})

Figure 4 arctan(1) = arctan($) + arctan(3); arctan(}) = arctan(§) + arctan(s5))
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