In (4), replace column 1 by column 1+ X7_; {x, times column(; + 1)} and expand
along the first row. This yields

0 o0 0 0 -1 0 0
bl a,, ap fee ay, ;-1 a; ay, j+1 ‘e a,
xd=|b an ay Ay j-1 Gy Gy 1 ccc 4y,
bn a,, a, an,j—l a,; Ay, i1 a,,
an  an ay,;-1 by a0 0 ay,
2|1 Gn ayj-1 by ay 1 0 ay,

=(-1)7 . ) . .
a,n a,, an,j_l bn an,j+1 App

. . d' .
Since d + 0, we obtain x; = 7’ (j=12,...,n).

Acknowledgement. The author would like to thank the Editor for his assistance in the preparation of
this capsule.
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Pascal Triangles and Combinations Where Repetitions Are Allowed
Kendell Hyde, Weber State College, Ogden, UT

For some simple, visual representations of any entry in Pascal’s triangle, superim-
pose an inverted Pascal triangle with the apex at the desired entry. Then the value of
the entry can be found by summing the product of the entries of any row of the
original triangle by the corresponding overlapping entries in the inverted triangle.
This is illustrated below, where the circled numbers are the entries of the inverted
Pascal triangle.

1
11
$299
10(1) =4(1) +6(1) \ (? (? (%
=1(1) +3(2) +3(1)
O
126(1) =70(1) + 56(1) 1 4 %D 4/1

=35(1) +35(2) +21(1)
=15(1) +20(3) + 15(3) + 6(1)
=5(1) +10(4) + 10(6) + 5(4) + 1(1)

1 8 28\ 70/56 28 8 1
@ Q

1 9 36 84 1&)6 126 84 36 9 1
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Since (’r') is the rth element in the nth row of Pascal’s triangle (the top row is the
Oth row, and the leftmost entry in each row is its Oth element), the preceding sums

(-2 (%))
£ ()= 2E )-S50

(3)= i(48—z)(}) i=0

i=0"

I
M»

o

This suggests the general formula

= ) ) o

for m<r (as well as for m>r if we let (" )=0 when r—i<0), which can be

i

readily proved by induction on m via the identity

n+1)_ (n) ( n )
( r ) r) T r—1)
The identity (1) has an interesting application when we find the number of
combinations of n objects taken r at a time where repetitions are allowed. As is well
known, the number of such combinations is

(n+r—1). )

r
But from (1), with m =r — 1, we see that

n+r—1\_(n n r—1 n r—1 n
()= ()T G ) () @
Thus, we can find the number of combinations of r objects where repetitions are
allowed by considering the following cases: The r objects are distinct with no
repetitions, r — 1 objects are distinct and there is 1 repetition, » —2 objects are
distinct and 2 of those are repeated (those repeated may not be distinct), and so on
until we select 1 object which is repeated r times.
The first factor (,”,) gives the number of ways of choosing the r—i distinct

—=i

elements. The second factor, ((’“" )i“ - ‘) - (’*_ 1), is the number of ways that we can

1

choose i objects (which may be repeated) from the distinct » =i objects. (Simply
replace » by r— i, and r by i, in (2).)

Example. Suppose we wish to find the number of combinations of 6 objects taken
4 at a time where repetitions are allowed. Based on (3), locate the 4th element in the
6th row of Pascal’s triangle and move leftward to the 1st element of the 6th row.
(Remember, we begin counting with zero.) Using these values for the base of an
inverted Pascal triangle, the apex will give the desired result (“:‘ 1) = ( 3) =126:

IN6 15 20 15/6 1
ORONONO)
21 7 1
1 8 28\5 70/5 28 8 1
1 9 36 84 \126/ 126 84 36 9 1
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The numbers (‘/’) (j=4,3,2,1) in the original triangle are the number of ways we

can choose j distinct objects. After selecting the objects to be used, the number of
combinations using these objects is given by the respective circled numbers. Hence,
the total number of combinations is

15(1) +20(3) + 15(3) + 6(1) = 126.

This procedure also works for combinations where r is larger than n, if we
extend our rows with zeros until we reach the rth entry in the nth row.

Example. The triangle below illustrates how to find the number of combinations of
3 objects taken 6 at a time, with repetitions allowed.

1 6 15 20\15 6
1 7 21 35
1 8 28 56 70 56\28/ 8 1

The nonzero elements (j) (j=3,2,1) in the base of this inverted triangle can be

used to find the number of combinations using 3, 2, and 1 objects. There is one way
to choose 3 objects, and once they are chosen we can form 10 different combinations
using those 3 objects. There are 3 different ways of choosing 2 distinct objects, and
with each pair we can form 5 combinations. Finally, there are 3 different ways of
choosing a single object, and with each choice we get 1 combination. Hence, the
total number of combinations is

(767)=(6) - BIR)+ ()E)+ G)E)  (B)E) 5]

28=0+0+ 0+ 1(10) + 3(5) + 3(1).

In the best examples, a clever person makes the computer obedient; in
the worst, an obedient person hopes the computer is clever.

Paul Lutus

Popular Computing (March 1985)
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