For the \(m \times n \) chessboard with \(m \leq n \), either board has a closed knight’s tour, so that \(T(m, n) = 0 \), or else

(a) \(T(m, n) = 1 \), where \(m \) and \(n \) are both odd except for \(m = 3 \) and \(n = 5 \);
(b) \(T(4, n) = 2 \) for all \(n \geq 4 \);
(c) \(T(3, 4) = T(3, 8) = 2 \), \(T(3, 5) = 3 \), \(T(3, 6) = 4 \);
(d) \(T(2, n) = 2n - 2 \) for \(n \geq 3 \);
(e) \(T(1, n) \) and \(T(2, 2) \) are undefined.

Acknowledgment. We thank the anonymous referee whose suggestions significantly improved the clarity and quality of this article.

REFERENCES
1. George Jelliss, Knight’s Tour Notes, \url{http://www.ktn.freenet.com/sitemap.htm}.

Proof Without Words: Every Octagonal Number Is the Difference of Two Squares

\[O_k = 1 + 7 + 13 + 19 + \cdots + (6k - 5) = (2k - 1)^2 - (k - 1)^2 \]

For \(k = 4 \):

\[T_k = 1 + 2 + \cdots + k \Rightarrow O_k = k^2 + 4T_{k-1} \Rightarrow O_k = (2k - 1)^2 - (k - 1)^2. \]

REFERENCE
R. Nelsen, Proof without words: Every octagonal number is the difference of two squares, this MAGAZINE 77:3 (2004) 200.

ELIZABETH JAKUBOWSKI
Florida State University, School of Teacher Education
Tallahassee, FL 32306

HASAN UNAL
Yildiz Technical University
Istanbul 34210, Turkey