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Yeast respond to cold shock by changing gene
expression

« Transcription factors are regulatory proteins that are encoded by
genes.
« Activators increase gene expression, while repressors

decrease gene expression.

« (Genes are turned on or off by the binding of transcription factors to
regulatory DNA sequences located on the genes.

 Qur goal is to determine the influence of a network of transcription
factors on gene expression during cold shock.

DNA microarrays were used to determine
expression for all 6000 genes In yeast

« Samples were subjected to cold shock for an hour, and then
allowed to recover for an hour after being removed from the cold.

« Data was collected for 5 strains: wild type, Acin5, Agin3, Ahmo1,
and Azap1.

« Samples were harvested at 0,15, 30, 60, 90, and 120 minutes.

« 3-5 replicates were performed for each time point for a total of 103
microarrays.
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Figure 1. Preparation of microarrays from total RNA isolated from the each
strain at six time points over the course of the cold shock experiment.

Dye intensity of individual spots on DNA
microarrays are used to analyze gene expression

+ The samples were labeled using Cy3 for the initial time point and
Cy5 for the rest of the time points.

« These samples were then hybridized to the microarray slide.

« Each spot contains DNA
from one gene in yeast.

+ |Images were analyzed with
Genepix Pro software to get
the ratio of fluorescent dye
intensity for each spot.

« Ratios were converted to
log base 2 to make the data
more symmetric.

* Loess normalization and
MAD scaling was used in R
Statistical Software 2.7.2. to
correct for dye intensity
biases and to ensure each
chip had the same weight in
the analysis.

Figure 2. Labeled RNA from two time points hybridized onto a microarray.
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21-gene network of transcription factors is
involved in the cold shock response

 The network was constructed from transcription factors documented

in the YEASTRACT database as regulating each other.

« Transcription factors were included in the network if their target genes
were enriched in a list of genes that satisfied one of two criteria:

« Had significant differential expression in the microarray data
iIndicated by a P value < 0.05 after an ANOVA test and Benjamini &
Hochberg correction.

« Potentially involved in the cold shock response as suggested by
other experimental evidence.
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Figure 3. The network consists of 21 nodes representing the gene, mRNA,
and transcription factor that it encodes, assuming that the gene is immediately
translated after transcription. The nodes are connected by 50 edges which
represent activation or repression depending on the sign of the weight of the
regulatory effect.

Gene expression is a dynamic balance between
production and degradation

 The rate of change of expression for each gene i in the network is
modeled by a nonlinear differential equation consisting of a production
term and a degradation term:

dx,
dt

 The production of gene / depends on the network of regulating genes
whose transcription factors activate and/or repress it.
+ Degradation of a gene is represented by a linear function Ax; where A;

is the degradation rate constant and x; is the expression profile of the
gene.
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Production was initially modeled by a sigmoid
function within the nonlinear differential equation
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 The production of a target
gene | is influenced by a rate
constant (P, and the weighted
(w;) concentrations of all
transcription factors j that
regulate it.

« The sign of w determines
whether or not a target gene
is activated or repressed.

+ +w indicates up-regulation
or activation.
* - indicates down-
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Figure 4. (A) Arepression is
represented by a standard sigmoid

regulation or repression. curve where the weight w is negative.
* The position of the expression (B) A standard sigmoid curve with a
threshold of gene /is positive weight w represents an
determined by the constant b, activation.

The sigmoid model does not accurately describe

transcriptional regulation

The sigmoid model inaccurately suggests that there is a high level of
initial transcription of a target gene before the binding of a repressor.
In the case of multiple regulators, the sigmoid model does not
accurately represent either an "AND"” or an “OR" transcriptional gate
type.
« An "AND" gate indicates that all transcription factors are required
to regulate the target gene.

« An "OR" gate indicates that either one of the transcription factors
s enough to regulate the transcription of a target gene.
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Figure 5. Representations of the regulation of a target gene controlled by
two regulators in the case of (A) AND and (B) OR transcriptional gates in
comparison to a (C) sigmoid model.

Michaelis-Menten kinetics more accurately
describe transcriptional regulation

The rate of gene expression is still determined by production and
degradation.

The production term now explicitly takes into account the "OR”

nature of activation and repression:
( T Tl AR

p(i:) _ _P ] Z ‘ 1FE.IJ_. | l ‘”;L;Jl:j-
. AL K I 3

« The first bracketed factor represents the relative weight of gene j.

« The second bracketed factor represents the Michaelis-Menten
reaction rate.

« The third term models the effect of repression.
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The degradation rate of Saturation of transcription rate (V,,.,)
the target gene is the
linear function Ax; as
previously described.
This production model
treats repression and
“OR" gate control more
accurately.
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Figure 6. The transcription rate is a function of the transcription factor
concentration. Km is the concentration of the transcription factor at which
the transcription rate is at 50% of its maximum (V,,.,) and V. ../2 is the
transcription rate at this half-saturation point.

Model parameters estimated based on microarray data

 The data and model were loaded into the MATLAB computational
environment.

« MATLAB's function ODE45 solves the model differential equation.

« MATLAB's function FMINCON compares the model to the microarray
data to estimate 50 w's, 21 b’s (only for the sigmoid model), and 21
production rates.

+ Degradation rates were taken from Belle et al. (2006).

« Fits were performed by comparing the model to strains individually
and by comparing the model to all strains simultaneously.

« Deletion strains are modeled by removing the strain from the system.

PHD1 expression profile is different between the
wild type and Acin5 strains
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Figure 7. The (A) wild type and (B) Acin5 models for PHD1. The models fitted
by both the sigmoid function (blue line) and Michaelis-Menten function (red
line) are shown.

Deletion may not be enough: weights need to be
adjusted to provide a better fit
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Figure 8. The wild type and Acind models for SWI6 based on Michaelis-
Menten kinetics. The models were fitted using (A) data for all strains and for
(B) individual strains in the simulation.

Conclusion

« Qur new model, using "OR" gates and Michaelis-Menten kinetics,
addresses repression and multiple regulators more accurately than the
sigmoidal model.

+ Differences are evident in the gene expression graphs between the
model produced by a nonlinear differential equation defined by a
sigmoid function and by one defined by Michaelis-Menten kinetics.

+ Changes in expression were observed between the wild type and
deletion strains when looking at graphs of both the sigmoidal model and
Michaelis-Menten model for each gene.

Acknowledgements

We would like to thank Dr. Fitzpatrick for all of his assistance with R and MATLAB
code, understanding the deterministic model, and the statistical tests.

We would like to thank Dr. Dahlguist for providing us with the data to normalize, the
current regulatory network, and other background information regarding the
experiment.

We would like to thank lab members (too numerous to list here) who have contributed
data.

This work was made possible by the NSF-RUI grant 0921038 and the McLaughlin
Chair of Biology.



