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In a recent Math Bite in this MAGAZINE [2], Judy Holdener gives a physical argument
for the relations
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)
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and comments that “It seems that one must enter the realm of complex numbers to
prove this result.” In fact, these relations follow from more general formulas, which
can be proved without using complex numbers. We state these formulas as a theorem.

THEOREM. If a, d ∈ R, d �= 0, and n is a positive integer, then
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We first encountered these formulas, and also the proof given below, in the journal
Arbelos, edited (and we believe almost entirely written) by Samuel Greitzer. This jour-
nal was intended to be read by talented high school students, and was published from
1982 to 1987. It appears to be somewhat difficult to obtain copies of this journal, as
only a small fraction of libraries seem to hold them.

Before proving the theorem, we point out that, though interesting in isolation, these
formulas are more than mere curiosities. For example, the function Dm(t) = 1

2 +∑m
k=1 cos(kt) is well known in the study of Fourier series [3] as the Dirichlet kernel.

This function is used in the proof of Dirichlet’s theorem: If a function f (t) is continu-
ous on [−π, π] and has f (−π) = f (π), then the Fourier series for f (t) converges to
f (t) at every point of [−π, π]. In fact, Pinkus and Zafrany [3] prove that
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)
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)
using the same method as Greitzer.

Proof of the Theorem. We reiterate that this proof is not original with the author.
Greitzer [1] proves the first formula and leaves the second as an exercise for the reader.
Therefore, in this note we will prove the second formula and refer the reader to Grietzer
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for the other, which proceeds along exactly the same lines. First, recall the trigonomet-
ric identity

sin(A + B) − sin(A − B) = 2 cos(A) sin(B). (1)

Now, if we write C for the sum we wish to evaluate, then multiplying by 2 sin(d/2)

and using (1) yields
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sin(nd/2),

where the third equality follows because the series telescopes. Solving our final equa-
tion for C completes the proof of the theorem.
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What is the path of a free-falling stone when dropped from the surface of a spinning
earth? This riddle is an old one. By the late Middle Ages it was common knowledge.
In the first printed book with illustrations in the English language, William Caxton in a
popular encyclopedia of what everyone should know, called The Mirrour of the World,
which appeared in 1481 and was a translation of a French manuscript of 1245, which
in turn was a translation of an earlier text in Latin, said [1, p. 55],

And if the earth were pierced through in two places, of which that one hole were
cut into the other like a cross, and four men stood right at the four heads of these
two holes, one above and another beneath, and like-wise on both sides, and that
each of them threw a stone into the hole, whether it were great or little, each
stone should come into the middle of the earth without ever to be removed from
thence.
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