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Ronald L. Graham [1] found relatively prime integers a and b such that the sequence 
(AO, A1, A2, . ..) defined by 

Ao==a, A1 = b, An = Anil+ An-2 (1) 

contains no prime numbers. His original method proved that the integers 

a = 331635635998274737472200656430763 
b = 1510028911088401971189590305498785 (2) 

have this property. The purpose of the present note is to show that the smaller pair of 
integers 

a = 62638280004239857 
b = 49463435743205655 (3) 

also defines such a sequence. 
Let (FO, F1, F2,... > be the Fibonacci sequence, defined by (1) with a = 0 and 

b = 1; and let F_= 1. Then 

An = Fn-l a + Fnb. (4) 

Graham's idea was to find eighteen triples of numbers (Pk, Mk, rk) with the properties 
that 

* Pk is prime; 
* Fi is divisible by Pk iff n is divisible by mk; 
* every integer n is congruent to rk modulo Mk for some k. 
He chose a and b so that 

a Fmk-rk bFk-rk+l (mod Pk) (5) 

It followed that 

An - O(mod pk) > n rk (mod Mk) (6) 

for all n and k. Each An was consequently divisible by some Pk; it could not be 
prime. 

The eighteen triples in Graham's construction were 
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(3,4,1) (2,3,2) (5,5,1) 
(7,8,3) (17,9,4) (11,10,2) 

(47,16,7) (19,18,10) (61,15,3) 

(2207,32,15) (53,27,16) (31,30,24) 

(1087,64,31) (109,27,7) (41,20,10) 

(4481,64,63) (5779,54,52) (2521,60,60) 

(It is easy to check that the second property above holds, because mk is the first 
subscript such that Fmik is divisible by Pk The third property holds because the first 
column nicely "covers" all odd values of n; the middle column covers all even n that 
are not divisible by 6; the third column covers all multiples of 6.) It is not difficult to 
verify by computer that the values of a and b in (2) satisfy (5) for all eighteen triples 
(7); therefore, by the Chinese remainder theorem, these values are the smallest 
nonnegative integers that satisfy (5) for 1 < k < 18. Moreover, these huge numbers are 
relatively prime, so they produce a sequence of the required type. 

Incidentally, the values of a and b in (2) are not the same as the 34-digit values in 
Graham's original paper [1]. A minor slip caused his original numbers to be respec- 
tively congruent to F32 and F33 (mod 1087), not to F33 and F4, although al the other 
conditions were satisfied. Therefore the sequences defined by his published starting 
values may contain a prime number A64n+31. We are fortunate that calculations with 
large integers are now much simpler than they were in the early 60s when Graham 
originally investigated this problem. 

But we need not use the full strength of (5) to deduce (6). For example, if we want 

An 0 (mod3) n I (mod4), 

it is necessary and sufficient to choose a # 0 (mod 3) and b 0 (mod 3); we need not 
stipulate that a 2 as required by (5). Similarly if we want 

An 0 (mod 17) n -4 (mod9) 

it is necessary and sufficient to have 

A4- (mod 17) and A 5 0 (mod 17); 

the sequence KA4, A5, A6, ... ) wil then be, modulo 17, a nonzero multiple of the 
Fibonacci sequence KFO5 F1, F2,... ). The latter condition can also be rewritten in 
terms of a and b, 

b 5a (mod 17) and a # 0 (mod 17), 

because A4 = 2a + 3b and A5 = 3a + 5b. This pair of congruences has 16 times as 
many solutions as the corresponding relations a 5 and b 8 in (5). 

Proceeding in this way, we can recast the congruence conditions (6) in an 
equivalent form 

b=dka(modpk) and a#0(modpk), (8) 

for each of the first seventeen values of k. We choose dk so that 

Frk-1 + dkFrk 0(modPk); 

this can be done since 0 < rk < Mk, hence Frk is not a multiple of Pk The following 
pairs (Pk, dk) are obtained: 



VOL. 63, NO. -I, FEBRUARY 1990 23 

(3,0) (2,1) (5,O) 
(7,3) (17,5) (11,10) 

(47,3) (19,17) (61,30) 

(2207,3) (53,4) (31,21) 

(1087,3) (109,100) (41,21) 

(4481,1) (5779,2) (2521,*) 

In each case we have 

Fk+ dkF?k+l7#0 (mod Pk) 

(Otherwise it would follow that F + d kFn +? 0 for all n and we would have a 
contradiction when n = 0.) 

The final case is different, because r18 = mi8. We want 

a --0O (mod2521) and b 0(m252521) (9) 

in order to ensure that the numbers A60n are divisible by 2521. 
Let us therefore try to find "small" integers a and b that satisfy (8) and (9). The 

first step is to find an integer D such that 

D-dk (mod Pk) (10) 

for 1 < k < 17. Then (8) is equivalent to 

b-Da (mod P) and gcd(a, P) = 1, (11) 

where 

P= PiP2 ... P17 = 975774869427437100143436645870. (12) 

Such an integer D can be found by using the Chinese remainder algorithm (see, for 
example, Knuth [2, Section 4.3.2]); it is 

D = - 254801980782455829118669488975, (13) 

uniquely determined modulo P. 
Our goal is now to find reasonably small positive integers a and b such that 

a = 2521n, b = aD mod P, (14) 

for some integer n. If a and b are also relatively prime, we will be done, because (8) 
and (9) will hold. 

Let C = 2521D mod P. We can solve (14) in principle by trying the successive 
values n = 1,2,3,5.. ., looking for small remainders b = nC mod P that occur before 
the value of a = 2521n gets too large. In practice, we can go faster by using the fact 
that the smallest values of nC mod P can be computed from the continued fraction for 
C/P (or equivalently from the quotients that arise when Euclid's algorithm is used to 
find the greatest common divisor of C and P). 

Namely, suppose that Euclid's algorithm produces the quotients and remainders 

Po = q1Pj + P2, 

P1 = q2P2 + P35 (15) 

P2 = q3P3 + P4 ' ... 
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when P0 = P and P1 = C. Let us construct the sequence 

no= 1, n1=q1, nj=qnnj?l + nj-2. (16) 

Then it is well known (and not difficult to prove from scratch, see Knuth [3, exercise 
6.4-8]) that the "record-breaking" smallest values of nC mod P as n increases, 
starting at n = 1, are the following: 

n nC mod P 

kn1+no P1-kP2 forO<k q2 
kn3+n2 P3-kP4 forO<k <q4 
kn5+ n4 P5-kP6 for O < k < q6 

and so on. (Notice that when, say, k = q4, we have kn3 + n2 = n4 and P3 - kP4 = P5; 
so the second row of this table overlaps with the case k = 0 of the third row. The same 
overlap occurs between every pair of adjacent rows.) In our case we have 

<ql, q2,q3,...) = 1,2, 352 1 328,1,4,1,1,1,6,12626,1,195,4,7,1,1,2,...) 
(17) 

and it follows that 

Kn1,n2,n3,...=K 1,3,10,23,33,122,...). 

The record-breaking values of nC mod P begin with 

n nC mod P 

1 679845400109903786358967922355 
2 383915930792370472574499198840 
3 87986461474837158790030475325 

13 56016376581815321375653177785 
23 24046291688793483961275880245 

These special values of n increase exponentially as the values of nC mod P decrease 
exponentially. 

The "best" choice of a = 2521n and b = nCmod P, if we try to minimize 
max(a, b), is obtained when a and b are approximately equal. This crossing point 
occurs among the values n = kn17 + n16, for 0 < k < q18 = 7, when we have 

a = 2521n b = nC mod P gcd(a, b) 

2502466953682069 237607917830996295 11 
12525102462108367 206250504149697855 1 
22547737970534665 174893090468399415 35 
32570373478960963 143535676787100975 1 
42593008987387261 112178263105802535 17 
52615644495813559 80820849424504095 1 
62638280004239857 49463435743205655 1 
72660915512666155 18106022061907215 5 

We must throw out cases with gcd(a, b) 0 1, but (luckily) this condition doesn't affect 
the two values that come nearest each other. The winning numbers are the 17-digit 
values quoted above in (3). 

Slight changes in (7) will probably lead to starting pairs (a, b) that are slightly 
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smaller than the 17-digit numbers in (3). But a proof applicable to substantially 
smaller starting values, with say fewer than ten digits each, would be quite remark- 
able. 
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Proof without Words: 
Consecutive sums of consecutive integers 

1+2=3 

X q 

n + llll 

9+10+11+12=1314+1 

; ~~~n +1XVn 

' .~~~~~~~~~~-OE B.NESE 

n2n-L and Ca Col Portland, OR+ 2n 

n nS ~~~~~~~~~~+ n + 
2 

9 + 10 + 11 + 12 = 13 + 14 + 15 
16 + 17 + 18 + 19 +20=21 + 22 +23 +24 

n2 + (n 2+ 1) + * * +(n 2+ n) =(n2 +n+1) + * * +(n 2 +2n) 

-ROGER B. NELSEN 
Lewis and Clark College 

Portland, OR 97219 
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