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Students aspiring to discover new and interesting results in mathematics need to
learn that one of the keys to success is asking a good question. For example, when
is it the case that the quadratic equation ax? + bx — ¢ = 0 with a, b, and c¢ positive
integers that (in some order) form an arithmetic progression has rational solutions?
Surprisingly, it turns out that

nl+m+r)x—m+2r)=0

has rational solutions if and only if n = r(Fu+1 — 1) and the solutions are
Fom/(Fynse1 — 1) and —Fopy0/(Fomy1 — 1) independent of » where Fj denotes the
kth Fibonacci number. This and similar results can be found in [2] and eventually lead
to a remarkable result concerning Pell’s equation in [3].

In this paper, we consider a somewhat related question that has an equally surprising
answer and that provides an interesting and informative study that students can readily
pursue. In particular, what can be said about the solutions to linear systems of equations
whose coefficients are in arithmetic progression—systems like

3x+5y=7
6x +9y =12
or
2x +5y+8z=11
x+y+z=1
3x+2y+2z=07?
It is immediate that the solution to the 2 by 2 system is (—1, 2) and, surprisingly,
this is so for any system of the form
ax+@+d)y=a+2d
bx + b +e)y =b+2e.
That is to say, the equation
—a+2a@+d)=a+2d

is an identity.

Is there a similar result for 3 by 3 or larger systems of the same type? Unfortu-
nately, the answer is no; any such system is necessarily dependent. Still one might
ask, “What if, for three independent linear equations, the coefficients are squares of
numbers in arithmetic progression?” When it turns out that the solution for such a
system is (1, —3, 3) and that the solution for any such system of four independent
linear equations in four variables whose coefficients are cubes of numbers in arith-
metic progression is the 4-tuple (—1, 4, —6, 4), one’s interest immediately picks up—
(1,2),(1,3,3),and (1, 4, 6, 4) are binomial coefficients. Aha! Indeed, since (1, —3, 3)
and (—1, 4, —6, 4) are the solutions for any such systems, we note that

a* —3(a+d)* +3(a + 2d)* = (a + 3d)*
and
—a® +4(a+d)? —6(a+2d)° +4(a +3d)® = (a + 4d)°
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are also identities in @ and d. Is this true in general? Is it the case that
a '+ @+d)" '+ +la+ = Dd]" %, = (@ + nd)"! (1

with (xq, x5, ..., x,) replaced by

(@) ()

is an identity in g and d?
Comparing the coefficients of a"~! when (1) is expanded, we see that, for (2) to be
a solution, we must have

n—1
Z(_l)n—l+i (’:) =1.
i=0

Since 1 = (Z), this is equivalent to the well-known identity

;(—1)" (7) =0

which follows from setting x = —1 in the polynomial fy(x) = (x + 1)" expanded by
the binomial theorem. Similarly, considering the terms a"~!=/d’ on each side of (1)
foreach j, 1 < j < n — 1, we must show that

n—1
Z(_l)n—H—i <’:) ij — nj. (3)
i=0

Again, since (Z) = 1, this is equivalent to proving that

Xn:(—l)i (’:) i’ =0. )
i=0

To accomplish this, we employ a useful device to introduce the powers i/ into the
sum. (See [1] where the same technique is used in a different context.) We start with
fo(x) = (x + 1)*, and proceed to define f(x), f2(x), ..., fu—1(x) as follows.

O =@+ =3y (’f) X,

(7

0
i)y =nGx+1y"' =) -,
i=1
n
1
1

A@ =xfi0) =nx@+ D =3 (7 )ix ©)

xi
(Zl) 12xi—1’
fH(x) = xf(x) = nx(x + D" +n(n — D21 +x)"? = Z (") i*x!

l
i=0

i

f@ =n@+ 1" +nn—Dx(1+x)"2 =)

.
.
n
lll
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and so on. In general,

f,-(x>=2"j(’§)ifx", 1<jsn—1

i—1

so that

fi=D =Y (=1 (’f) i/ ©)
i=1

as desired on the left hand of (4). Moreover, as in (5), f;(x) consists of terms of the
form

ax*x+ D", 1<k<j<n-—1,

and it follows that f;(—1) = 0. Therefore, from (6),

> -1y (’l’) il =0
i=1

as required, and the proof is complete.

Comment

One should always leave a problem open-ended; it is never known where an investiga-
tion might lead. In this case, we were lead to the interesting indentity in (4); a result
already known to those familiar with Stirling numbers of the second kind. In general,
students will not be familiar with these numbers and they should be encouraged to ask,
“Can the result of (4) be extended?” In particular, we challenge readers not already fa-
miliar with them to guess and prove the remarkable results obtained by consdering the
sum in (4) for j =nandn + 1.

References

1. H. A. Krishnapriyan, Eulerian polynomials and sums of powers of integers, This Journal, 26:2 (1995), 118-
123.

2. C.T. Long, G. L. Cohen, T. Langtry, and A. G. Shannon, Arithmetic sequences and second order recurrences,
in Applications of Fibonacci Numbers, Vol. 5, Kluwer Academic Publishers, 1993.

3. C.T. Long, and W. A. Webb, Fundamental solutions of u?> — 5v2 = —4r2, in Applications of Fibonacci Num-
bers, Vol. 7, Kluwer Academic Publishers, 1998.

VOL. 32, NO. 2, MARCH 2001 THE COLLEGE MATHEMATICS JOURNAL 137



