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Suppose we randomly and independently choose n numbers X1, X2, . . . , Xn from the
interval [0, 1] according to some probability distribution. Put these numbers in ascend-
ing order and call the results Y1 ≤ Y2 ≤ · · · ≤ Yn . If 1 ≤ k < ` ≤ n, how large can the
number Y` − Yk be? A moment’s reflection reveals that by choosing the X ’s appropri-
ately, we can make Y` − Yk as small as zero or as big as one. But what if we consider
the expected value of the random variable Y` − Yk? This expectation can be as small as
zero if the common probability distribution of the X ’s is degenerate at a single point.
But how large can this expectation be? We will answer that question in this article.

In statistics courses the set of random variables X1, X2, . . . , Xn is called a random
sample and Y1, Y2, . . . , Yn are called its order statistics. We represent the common
probability distribution of X i by the cumulative distribution function (cdf), defined for

all real numbers x by F(x) = P(X i ≤ x). We assume that F(0−)
def
= limx→0− F(x) =

0 and F(1) = 1 so that P(0 ≤ X i ≤ 1) = 1.
We first compute the probability distribution of Yk , as follows. For x ∈ [0, 1], let

Nx be the number of observations among X1, X2, . . . , Xn which do not exceed x .
The random variable Nx is therefore the number of successes in n Bernoulli trials,
where each trial has success probability p = F(x). Consequently, Nx has a binomial
distribution and hence

P(Yk > x) = P(Nx ≤ k − 1)

=

k−1∑
j=0

(
n

j

)
[F(x)] j [1− F(x)]n− j . (1)

The expected value of any random variable Y satisfying P(0 ≤ Y ≤ 1) = 1 is given by

E(Y ) =
∫ 1

0
P(Y > y) dy (2)

(see, for example, Chung [1]). Note that this last integral always exists as a real number.
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It now follows from (1) and (2) that

EF (Y` − Yk) =

∫ 1

0
Pk,` (F(x)) dx, (3)

where our notation indicates that this expectation depends on F and the polynomial
Pk,` is defined for t ∈ [0, 1] by

Pk,`(t) =
`−1∑
j=k

(
n

j

)
t j (1− t)n− j . (4)

The uniform distribution

As an example, suppose that each X i has the Uniform distribution with cdf given by
F(x) = x for 0 ≤ x ≤ 1. It follows from (1) that

P(Yk > x) =
k−1∑
j=0

(
n

j

)
x j (1− x)n− j .

This distribution is called a Beta distribution (see for example, Hogg, McKean, and
Craig [2]). We leave it as an exercise for the reader to show that∫ 1

0
x j (1− x)n− j dx =

1

(n + 1)
(n

j

) . (5)

Readers who are familiar with Beta distributions will recognize this result. It now
follows from (3), (4), and (5) that

E (Y` − Yk) =
`− k

n + 1
. (6)

The reader should ask herself whether this last result seems intuitively reasonable.
We will next find a distribution for X i (which will depend on the choice k and `)

that maximizes the value of E (Y` − Yk).

A Bernoulli distribution

Suppose each X i has the probability distribution with point masses at zero (with prob-
ability p) and at one (with probability 1− p). This distribution is called a Bernoulli
distribution. Its cdf depends on p and is given by

Fp(x) =


0 if x < 0
p if 0 ≤ x < 1
1 if x ≥ 1.

From (3) it then follows that

Ep (Y` − Yk) = Pk,`(p).
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Which value of p maximizes this expectation? After some algebra it is easy to
see that

P ′k,`(p) = npk−1 (1− p)n−l

[(
n − 1

k − 1

)
(1− p)`−k

−

(
n − 1

`− 1

)
p`−k

]
. (7)

Using the first derivative test it now follows Ep (Y` − Yk) is maximized for

p = pmax
def
=

1+

((n−1
`−1

)(n−1
k−1

)) 1
`−k
−1

(8)

and that Ep (Y` − Yk) < Epmax (Y` − Yk) if p 6= pmax. For notational simplicity we have
suppressed the dependence of pmax on k and `.

The main result

The last example leads to our main result, which gives the maximum value for
EF (Y` − Yk) and answers the question posed in the introduction. We are maximiz-
ing this expectation over all possible probability distributions on [0, 1].

THEOREM 1. Suppose X1, X2, . . . , Xn are independent random variables each
having the same cdf F satisfying F(0−) = 0 and F(1) = 1. For fixed integers k
and ` satisfying 1 ≤ k < ` ≤ n, let Yk and Y` be the kth and `th order statistics for
X1, X2, . . . , Xn . Define the polynomial Pk,l as in (4), pmax as in (8) and Fmax by

Fmax(x) =


0 if x < 0
pmax if 0 ≤ x < 1
1 if x ≥ 1.

Then EF (Y` − Yk) ≤ Pk,` (pmax) with equality holding if and only if F(x) = Fmax(x)
for all x.

Proof. Using (3) and (7) and applying the first derivative test we have

Pk,` (pmax)− EF (Y` − Yk) =

∫ 1

0
Pk,` (pmax)− Pk,` (F(x)) dx ≥ 0. (9)

Equality obviously holds if F = Fmax. Conversely, suppose there is a number x0 ∈

[0, 1) at which F(x0) 6= pmax. Since F is right continuous at x0, it follows that there
is a number δ > 0 such that the integrand in (9) is strictly positive on [x0, x0 + δ).
Since this integrand is nonnegative on [0, 1], the inequality in (9) must be strict in this
case.

A possible application and some examples

As a possible application of our theorem, suppose data are collected from some un-
known distribution on the interval [0, 1] and the values of Yk and Y` are obtained. Since
Y` − Yk is an unbiased estimator of its expectation, an observed value of this differ-
ence which grossly exceeds our upper bound may cast doubt on the assumption that
our data are a random sample.

The upper bound Pk,`(pmax) simplifies nicely in certain special cases. We explore
two cases. The reader is invited to consider others.
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CASE 1. ` = k + 1

In this case pmax =
k
n and so the maximum value for EF(Yk+1 − Yk) is

Pk,k+1(pmax) =

(
n

k

)(
k

n

)k (
1−

k

n

)n−k

, (10)

which is the binomial probability of obtaining exactly k successes in n Bernoulli trials
each with success probability k

n .
To interpret this maximum value, we point out that according to our theorem,

if the upper bound for EF(Yk+1 − Yk) is to be achieved, then every one of the X ’s
must be either zero or one. If we interpret successes as zeros and failures as ones,
then Yk+1 − Yk = 1 when we have exactly k successes and Yk+1 − Yk = 0 otherwise.
Hence EF(Yk+1 − Yk) is the binomial probability of obtaining exactly k successes in
n Bernoulli trials. It can easily be checked that the value of the success probability p
which maximizes this binomial probability is pmax =

k
n .

CASE 2. ` = n + 1− k where k < n+1
2

In this case
(n−1

k−1

)
=
(n−1
`−1

)
so that pmax =

1
2 and hence the maximum value for the

expected “trimmed range” EF(Yn+1−k − Yk) is

1

2n

n−k∑
j=k

(
n

j

)
= 1−

1

2n−1

k−1∑
j=0

(
n

j

)
. (11)

Our theorem shows that this maximum is achieved only in the case where

P(X i = 0) =
1

2
= P(X i = 1)

A different proof of that fact, which uses the notion of convexity, is given in [3] for the
case k = 1.

Returning to the case where each X i is uniformly distributed and recalling (6) we
see from (10) that

1

n + 1
<

(
n

k

)(
k

n

)k (
1−

k

n

)n−k

and from (11) that

k

n + 1
>

1

2n

k−1∑
j=0

(
n

j

)

We close by inviting the reader to verify these last two inequalities directly.
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Summary It is well known that the order statistics of a random sample from the uniform distribution on the
interval [0, 1] have Beta distributions. In this paper we consider the order statistics of a random sample of n
data points chosen from an arbitrary probability distribution on the interval [0, 1]. For integers k and ` with
1 ≤ k < ` ≤ n we find an attainable upper bound for the expected difference between the order statistics Y` and
Yk . This upper bound depends on the choice of k and ` but does not depend on the distribution from which the
data are obtained. We suggest a possible application of this result and we discuss some of its special cases.
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Why there are exactly

1

30
(230
− 215

− 210
− 26
+ 25
+ 23
+ 22
− 2)

irreducible monic polynomials of degree 30 over the field of two elements? In this note
we will show how one can see the answer instantly using just very basic knowledge of
finite fields and the well-known inclusion-exclusion principle.

To set the stage, let Fq denote the finite field of q elements. Then in general, the
number of monic irreducible polynomials of degree n over the finite field Fq is given
by Gauss’s formula

1

n

∑
d|n

µ(n/d)qd,

where d runs over the set of all positive divisors of n including 1 and n, and µ(r) is
the Möbius function. (Recall that µ(1) = 1 and µ(r) evaluated at a product of distinct
primes is 1 or −1 according to whether the number of factors is even or odd. For
all other natural numbers µ(r) = 0.) This beautiful formula is well-known and was
discovered by Gauss [2, p. 602–629] in the case when q is a prime.

We present a proof of this formula that uses only elementary facts about finite fields
and the inclusion-exclusion principle. Our approach offers the reader a new insight
into this formula because our proof gives a precise field theoretic meaning to each
summand in the above formula. The classical proof [3, p. 84] which uses the Möbius’
inversion formula does not offer this insight. Therefore we hope that students and users
of finite fields may find our approach helpful. It is surprising that our simple argument
is not available in textbooks, although it must be known to some specialists.
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