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This note derives the determinantal formulas for the coefficients in the characteristic poly-
nomial of a matrix. In some areas of mathematics and other fields of science one has to determine
the characteristic polynomial

P(N) =det(4 —ANI) =bN"+ b N+ b,N"2+ -+ +b,_A+b,, §))

of a matrix 4, where 4 =(a;;) is an n X n matrix over the field of real numbers (or complex
numbers) and [ is the n X n identity matrix. Once P(A) is determined, the sought for eigenvalues
A, i=1,2,...,n, of A may be obtained by solving the characteristic equation P(A) =0. When
n < 3, usually one obtains P(A) by expanding the det(4 —AJ) by minors. When » > 3, this task
may become somewhat laborious. For a method of determining the b,’s in (1), see [1], where the
following recursive formula is found:

n n 1 n
by=(-1)" b=-(-1'T, b2=_§[b1T1+(_1) 7],
1 "
by= 30T+, +(-1)"T],..., (2)

b, = _%[bn—lTl +b, 20+ -+, T, +(_1)n7:z]’

where T}, T,,..., T, denote the traces of the matrices 4, 42,..., A", respectively. (The trace of an
n X n matrix B is the sum of the elements on its main diagonal.)

We shall now present an alternative method for determining the coefficients of the characteris-
tic polynomial. This method will involve the expansion of determinants of order 1 through »
rather than computing the traces of the matrices 4, 42,..., 4"

For our purpose, we shall consider the polynomial

g(t) =det(K+1) (the + sign intended), (3)

where K = (k;;) is an n X n matrix over the field of real numbers (or complex numbers). We now
ask, what is the coefficient C, of ¢" in (3)? To separate the occurrences of ¢, let

f(t,ty,..yt,) =det( K +diag(t,, t5,...,1,)).

Then g(t)=f(t,¢t,...,1), and C, is the sum of the coefficients of the terms of total degree r in
f(t,t,..., t,). The fact that f(#,1,,...,¢,) is of degree 1 in each ¢, separately simplifies the
accounting:

0 ftstyseeisty)
= R — 158950
G= > R T TR T7 PR S
11<,2<...<1, 1 2 r 1
1,=0
1;0

n

where 1 <y, i, <n,and 0<r<n.
Thus, the C’s are now expressed in terms of the elements of the matrix K. Let D be the
determinant as a function of the n* entries:

kll e kln
D(kll,klzy"‘?knn)= . “ee .
ko ... k
Then
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D. (4)

ar
G= X | Ok, 0k, - Ok

i <iy< - < iy Oiyiy ©° i,

Because of the cluster of n* variables, it may be wise to spell out the transition to formula (4).
We can reduce this cluster by suppressing the dependence of D on its off-diagonal variables k;;
where i #j. This suppression is feasible because these off-diagonal variables are parameters that
remain fixed throughout this whole discussion. So let us write

[t tyst,) =D*(ky + tkyy + tys sk, + 1)
where D* is a function of only n variables &y, k,,,..., k,, defined by
D*(kll’ k22,...,k,m) =D(k11’ k12’---’knn)'
In this notation, it is manifest that

a'f
311‘1 31‘[2 U 8ti, - D:"l"lk"z"z ki,i,( kpn+h,ky a0kt t”)’

where the subscripts denote partial derivatives of D*.

The rule for expansion of a determinant by a row (or column) tells us that dD/dk;; is the
(i, j) cofactor of K; when i=; (on the diagonal), this is the (i, i)-minor. Thus, the partial
derivative in (4) is just the subdeterminant of K resulting from crossing out the rows and
columns numbered i, i,,...,i,.

ExXAMPLE. Let us determine g(¢)= det(K +¢I), where

ki ki ki
K= k21 k22 k23
ky ki ki
Solution.
ki ki ke
D(kll’ klz,...,k33) = k21 k22 k23 . (5)
ky ki ks
By definition:
C0=D(kll,k12,...,k33) (6)

3 4D . 4D . 4D
G =,Z 9k, D= Gy T Ty T Ky, )

1 ki ks ki 0 ks ki ki O
=10 ky kyyl+|ky 1 ky|+|kny kypy O
0 kyp ki ky 0 ky ky kyp 1

- k22 k23 kll kl3 kll k12
k32 k33 k31 k33 k21 k22
92 92D 3:D 3:D
C= X Gk kD ok T Oy oks T 9ky 0k, ®)
I <12 1 202

1 0 ky| |1 ky O] |ky 0 O
0 1 ky|+|0 ky O|+|ky 1 0
0 0 ky| [0 ky 1| |ky 0 1
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=kyy+ky+ky

G= D= =0 1 o|=L 9
? i <iy<i, akililakizizakiais 0kyy 0k, ks 0 0 1
Thus, our desired polynomial g(z) is given by
g(1) =Co+ Cit+ G + G, (10)
where G, Cy, C,, and C; are given by (6)—(9), respectively.
Taking
1 2 3
K=14 2 2],
3 2 3
we have:
1 2 3
C=l4 2 2/=4, c]=’2 2+‘1 3’+’1 2‘=2—6—6=—10,
3 2 3 2 313 3| [4 2

C,=3+2+1=6, C,=1.
Substituting these values in (10), we obtain
g(t) =—4-10t+ 612+ 1.

REMARK. The relationship between g(#) of (3) and P(A) of (1) is given by g(—A) = P(A),
where going from (1) to (3), we have put K=4 and t= —A.
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Matrices as Sums of Invertible Matrices

N. J. Lorp
Tonbridge School
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While it is a trivial truism that not every matrix is invertible, it does not seem to be well known
that every matrix can be expressed as the sum of two invertible matrices. The proof of this makes
a good exercise in elementary linear algebra and, although a direct proof is short, we have
expanded the discussion to indicate several contrasting lines of attack.

For convenience we shall adopt the following notation:

F will denote the field under consideration;

g will denote the number of elements of F if F is finite;

M (n,F) will denote the ring of n X n matrices with entries in F, where n> 1;

G(n,F) will denote the group of invertible matrices in M(n,[F);

I (or I, for emphasis) will denote the n X n identity matrix.

The theorem that we are going to prove then is as follows:
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