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Introduction If there are k people in a room, what is the probability that at least
two of them have the same birthday? Intuitively, people guess that the answer is
k /365 or close to it [4]. Of course the probability of a match is

1—(365)(364) - - (365 —k + 1) /365%,

which is greater than 0.5 even if there are only 23 people in the room. Probability
instructors are fond of demonstrating this fact in class by asking the students to
announce their birthdays until a match is discovered. The authors are courageous
enough to try the demonstration in classes with 30 or more students so that the
probability of a match is at least 0.706.

Recently, however, we got worried. The probabilities given above are based on the
assumption that a randomly chosen individual is just as likely to have a birthday on,
say, October 1 as on January 10. In other words, the assumption is that

p;=1/365,

for i =1,...,365, where p, is the probability that a randomly chosen individual has a
birthday on the ith day of the year. Since some births are scheduled, this assumption
of equally likely birthdays is questionable. So, the probability of a match with, say, 30
people in the room is not necessarily 0.706. Could it be smaller? Should we be less
courageous in our classroom demonstrations? The answer is no. If the distribution of
birthdays is not uniform, then the probability of a match is at least as large as it is
when the birthdays are uniformly distributed throughout the year. We call this fact
the birthday inequality.

It isn’t new. Bloom [1] and Rust [6] give proofs using Lagrange multipliers and
Munford [5] gives one using elementary symmetric functions. Our purpose is to
strengthen the birthday inequality and to place it in its natural setting—the theory of
majorization and Schur-convexity. The stronger result appears in Marshall and
Olkin’s book on majorization [3, p. 305] as a corollary to a much more general
theorem. Our treatment is elementary. -

The birthday inequality Let the n-tuple p=(p,,..., p,) be any probability vector
of birthdays for the n =365 days of the year. Given p, let P,(p) denote the
probability of at least one match among k people and let Q,(p) =1 — P,(p) be the
probability of the complementary event that all k birthdays are different. We want to
prove Pi(p) > P,(u), or equivalently

Qx(p) < Qx(w), (1)

where u=(1/n,...,1/n) is the uniform distribution of birthdays.
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We need a formula for Q,(p). Given k people and an ordered selection i, ..., i; of
k days of the year, the probability that person j is born on day i, for j=1,...,k is
Pi,--- p;,. 1t follows that

Qx(p) = Xpi, " Py (2)

where the sum is taken over all sequences i,...,i; of distinct integers from 1 to n.
This sum is easy to compute for the uniform distribution. There are (365)364) - - -
(365 — k + 1) ways to pick a sequence of k distinct integers from 1,...,365. So the
probability of no match is given by Q,(u) = (365)(364) - - - (365 — k + 1) /365, as we
saw earlier.

The proof of inequality (1) requires a slight reformulation of formula (2) in terms of
elementary symmetric functions. The kth elementary symmetric function of p =
(py, ..., p,) is defined by

Ex(p) = Xpi - Py

where the sum is taken over all strictly increasing sequences iy,...,i, of integers
from 1 to n. Since Q;(p) = k! E,(p), it suffices to prove that
Ei(p) <Ei(u) (3)

instead of the original birthday inequality (1).

Proof of the birthday inequality One of the ideas involved in the proof is that of a
T-transform. Given an n-tuple, say p = (.28,.16, .41, .11,.04), pick two coordinates, say
p, = .28 and p, =.16. A T-transform has the following action on p:

(.28,.16,.41,.11,.04) > (28 —d, .16 +d, 41,.11,.04),

where d is a positive number satisfying d <|p, — p,| that must be subtracted from
the larger of the two coordinates and added to the smaller. If we choose d = .08, then
the corresponding T-transform sends p to (.20,.24,.41,.11,.04). Only two of the
coordinates of p are changed and they get closer together. We might say that
(.20, .24, 41, .11, .04) is more uniform or less spread out than (.28, .16, .41, .11, .04)—an
idea that we will develop in the next section. The T-transform does not change the
sum of the coordinates of p.

An appropriate sequence of T-transforms can change any probability vector p into
the uniform probability vector u. To see this observe that if p # u then p has a pair of
coordinates p,, p;, satisfying p,>1/n>p,. Let T be the T-transform that subtracts
d=p,— 1/n from the ith coordinate of p and adds d to the jth coordinate. Then the
ith coordinate of Tp is 1/n. In this way p can be transformed by a sequence of
T-transforms to u. In our example, four T-transforms are needed to get from p to u:

(.28,.16,.41,.11,.04) — (.20,.24, 41, 11, .04)
- (.20,.20, .41, .15, .04)
- (.20,.20, 20,15, .25)
- (.20,.20, .20, 20, .20).

Why introduce the T-transform? Because it increases the value of the kth elementary
symmetric function. That is, if p is a probability vector and T is a T-transform, then

Ei(p) <E(Tp). (4)



VOL. 64, NO. 3, JUNE 1991 185

This is just what we need to prove the birthday inequality. If p>q—>r— -+ - u
is a sequence of T-transforms that takes p to the uniform distribution u, then from (4)
we have

Ex(p) <Ei(q) <Ei(r) < -+ <E(u)

and inequality (3) will be proved. All that remains in the proof of the birthday
inequality is to show (4). We accomplish this using two properties of the elementary
symmetric functions.

First, elementary symmetric functions are symmetric. That is, a permutation of the
coordinates of p does not change the value of the elementary symmetric function.
Thus to prove inequality (4), we may assume that p=(p,,...,p,) with p, >p, and
that the T-transform changes only the first two coordinates of p. So suppose
Tp=(p,—d,p,+d,ps,...,p,) The second property of the elementary symmetric
functions is that they occur as the coefficients of the polynomial (x +p;)
(x +py) -+ (x+p,). Thatis,

(x+py) - (x+p,) =x"+E(p)a" "'+ - +E(p)x" *+ - +E,(p).
Only the first two factors of the polynomials

(x+p)(x+po)(xtps) + (x+p,) (5)

and
(x+pi—d)(x+py+d)(x+py) - (x+p,) (6)

differ. Examine the coefficients of the quadratics

(x+p)(x+py) =x*+(p, +ps)x+pp, (7

and
(x+p,—d)(x+py+d) =22+ (p, +py)x+ (ppy + (py —p2)d —d?). (8)

Both coefficients of x% equal 1. The coefficients of x are also the same but the
constant term in (7) is less than or equal to the constant term in (8) because
0 <d <p; —p,. Since the p, are nonnegative, every coeflicient of polynomial (5) is
less than or equal to the corresponding coeficient in (6). Specifically, E,(p) < E,(Tp).
This completes the proof of (4) and the birthday inequality.

We have proved more than the birthday inequality. Namely, if p and q are
probability vectors and there is a sequence of T-transforms changing p to q, then
P,(q) < Pi(p). But for a given pair of probability vectors, it may not be easy to tell if
one of them can be obtained by applying a sequence of T-transforms to the other one.
In the next section we examine the conditions under which an arbitrary n-tuple y can
be obtained from an n-tuple x by a sequence of T-transforms.

Majorization and Schur-convexity Let x and y be any two real n-tuples. How can

we tell if there is a sequence of T-transforms that change x to y? The following

theorem [3, p. 7] provides a simple answer in terms of partial sums of the largest

coordinates of the vectors x and y. We omit the proof. The coordinates for any

z=(z,,...,2,), arranged in nonincreasing order will be denoted by z;> 2z >
"2 Ry
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Tueorem. Let x=(x,,...,x,) and y = (y,,...,y,) be real n-tuples. There exists a
sequence of T-transforms that changes x to y if and only if
Xt o Fx 2yt Yy 9)
forallr=1,...,n, and
XpF A, =y oty (10)

These conditions are very easy to check for any given pair of n-tuples. For
example, (9) and (10) hold for the vectors x=(28,.16,.41,.11,.04) and y=
(.20, .20, .20, .15, .25). Thus the theorem tells us what we have already verified—there
is a sequence of T-transforms taking x to y. If (9) and (10) hold, we say that x
majorizes y and we write x>>y. Intuitively, x is more spread out than y or
equivalently, y is more uniform than x. Equation (10) means that we can compare (via
majorization) only those n-tuples whose coordinate sums are equal. The largest and
smallest n-tuples with nonnegative coordinates and given coordinate sum S are
(5,0,...,0)and (S/n,...,S/n), respectively. That is, if each x; > 0 and x, + -+ +x,
=S, then

(S,0,...,0) > (x1,...,x,) > (S/n,....,S/n).

In the case of probability vectors, the uniform distribution (1/n,...,1/n) is ma-
jorized by all other probability vectors.

We turn now to the definition of Schur-convex and Schur-concave functions. A
real-valued function F(x) of n real variables x = (x,...,x,) is Schur-convex if x >y
implies F(x) > F(y) and Schur-concave if x>y implies F(x) < F(y). Equivalently,
F(x) is Schur-convex (Schur-concave) if F(x) > F(Tx) (F(x) < F(Tx)), for all T-trans-
forms. Perhaps Schur-increasing and Schur-decreasing would be better terms, but the
names convex and concave have been in use for a long time. From the definition we
see that among all n-tuples with nonnegative coordinates and a given coordinate sum
S, a Schur-convex function takes its maximum value at (S,0,...,0) and its minimum
value at (S/n,...,S/n). In the case of a probability vector, a Schur-convex function
takes its maximum value at (1,0,...,0) and its minimum value at the uniform
probability vector u=(1/n,...,1/n). We have shown that P,(p) is a Schur-convex
function of p. Thus the probability of matching birthdays is least when the probability
vector is u and greatest when everyone is born on the same day of the year. For a
Schur-concave function, the maximum and minimum are reversed.

Many standard inequalities involve Schur-convex or Schur-concave functions F
and have the form

F(xy,...,x,) > F(S/n,...,S/n)
or
F(xy,...,x,) <F(S/n,...,S/n).

The arithmetic-geometric mean inequality is an example. For nonnegative numbers
Xy,--->%,, the arithmetic-geometric mean inequality can be written in the form

x,...x, <(S/n)".

Recasting this inequality in terms of the nth elementary symmetric function
E(x,,....,x,)=x,...x, we get
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E (xy,....,x,) <E/(S/n,....S/n).

In the proof of the birthday inequality, we showed that the elementary symmetric
functions E,(p) are Schur-concave, at least for probability distributions p. In fact, the
same proof shows that the elementary symmetric functions are Schur-concave on the
set of all n-tuples with nonnegative coordinates; they need not sum to 1. In particular,
the function E_ is Schur-concave and the arithmetic-geometric mean inequality is
equivalent to the fact that E, attains its maximum value at (S/n,...,S/n).

Now we return to probability and give another example of a function of a
probability vector that is Schur-convex and thus obtains its minimum value at the
uniform probability distribution u.

The collector’s inequality There are n distinct baseball cards; one of these is
included in each package of bubble gum. The collector’s goal is to obtain at least one
copy of each card. Unfortunately, all selections are made blindly. (You have to buy the
bubble gum before you can open the package and see which card is inside.) The
collector’s problem is this: What is the average (expected) number of packages
required in order to obtain a complete collection of all n baseball cards?

First, assume that the cards are uniformly distributed in the gum packages. Then
the average number of packages required to collect a complete set is given by,

A(wy=n/n +n/(n=1) + -+ +n/2 +n/l. (11)

This well-known formula appears in Feller's book [2, p. 225]. The proof depends on
this intuitive result: If p is the probability of success in a sequence of Bernoulli trials,
then the average number of trials required to obtain a success is 1/p.

But what if the cards are not distributed uniformly in the gum packages? Then the
average number of packages A(p) required to collect a complete set depends on the
probability vector p=(p,, ..., p,), where p;, is the probability that a randomly chosen
gum package contains card i. The result we wish to point out is that A(p) is a
Schur-convex function of the probability vector p. That is, if p > q, then A(p) > A(q).
Thus, the minimum value of A(p) occurs when p is the uniform distribution
u=(1/n,...,1/n), ie.,, when each of the cards is just as likely to occur in a package
as any other card. The proof that A(p) is Schur-convex follows from a theorem in
Marshall and Olkin [3, pp. 297, 306]. We present a simple proof that A(p) is
Schur-convex in the case n = 2. In this case there are only two cards to collect, say
Aaron and Ruth. Suppose these cards occur with probabilities p, and p,, respec-
tively. If we get Aaron in the first package, then (by the intuitive result above) the
expected number of additional packages required to get Ruth is 1/p,. So in this case
we expect to buy a total of 1 + 1 /p, packages. Likewise, if we get Ruth first, then we
expect to buy a total of 1 + 1/p, packages. Thus

A(py,pe) =pi(1+1/py) +po(1+1/p)) (12)
=1+p,/ps+ps/P1-

Equipped with formula (12) for A(p), we proceed to show that A(p) is Schur-convex.
This amounts to showing that A(1 — p,, p,) is a decreasing function in p,, for p, in
the interval [0,1/2]. (By symmetry, we may assume that 0 < p, < 1/2.) But
A(1 =pg,pg) =1+ (L =py) /Pyt pa/(1=py)
= 1/(792(1 _Pz)) - L
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The quadratic p,(1 —p,) increases on the interval [0,1/2], so A(l —p,,p,) de-
creases on the same interval. Thus A(p) is Schur-convex for n = 2.

We have given two examples of a function in several variables with constant sum
that attains its maximum or minimum value at the point where all the variables are
equal. When you encounter such an inequality, you should suspect that a stronger
version may be true. The function might also be Schur-convex or Schur-concave. For
a superb account of the history, theory, and applications of majorization see Marshall
and Olkin’s definitive work [3]. '
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Monte Carlo Simulation of Infinite Series
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Let ¢ be a real number. A Monte Carlo simulation of ¢ consists of these steps: First,
a random experiment is devised and a random variable X is defined for the
experiment such that the expectation of X satisfies ¢ = E(X). Second, the random
experiment is performed a large number, K of times; let X; denote the value of X on
the ith experiment. By the Strong Law of Large Numbers,

X +X,+ - +X
¢c=E(X;) = lim ———2F——F
K— o

with probability 1. Consequently, for large K, ¢ “should be” approximately
(X;+ X, + -+ +X)/K. This ratio is then the Monte Carlo estimate of c.

This method also covers the case in which the constant ¢ is represented as the
probability of an event A rather than directly as the expectation of a random variable.
Namely if ¢ = P(A), then perform the random experiment through which event A is
defined and define the random variable X by

X = {1, if A occurs
0, if A does not occur.
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