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We enjoyed reading how Horton [1] “fooled Newton’s method” with an example where
the sequence

xn+1 = xn − f (xn)

f ′(xn)

converges but its limit does not satisfy f (x) = 0. Indeed, if

f (x) =
{

π − 2x sin π

x for x �= 0,
π for x = 0,

(1)

then the Newton sequence is

xn+1 = xn − 1

2

πxn − 2x2
n sin π

xn

π cos π

xn
− xn sin π

xn

,

and, starting from x1 = 1/2, we have x2 = 1/4, x3 = 1/8, . . . , xn = 1/2n → 0, al-
though f (0) = π �= 0.

Can f be differentiable? Note that the function in (1) is not differentiable at x = 0.
Since we thought that a differentiable function would fool the method even better, we
wanted to know if such a function exists. Simply modifying Horton’s function, we
found an example that readers might find even more surprising:

f (x) =
{

π − x2 sin π

x2 for x �= 0,
π for x = 0.

(2)
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This function is differentiable and its Newton sequence is

xn+1 = xn − 1

2

πxn − x3
n sin π

x2
n

π cos π

x2
n

− x2
n sin π

x2
n

.

Again, if x1 = 1/2, then xn = 1/2n → 0, but f (0) = π �= 0.

Can f be continuously differentiable? Because f in (2) is not continuously dif-
ferentiable at x = 0, our next question was: Can we fool Newton’s method with a
continuously differentiable function?

The answer is negative. More generally, f ′ cannot be bounded near the limit point
x0. (If f ′ were continuous, then it would be bounded there.) For, assume that xn → x0

and f is continuous at x0. Since

xn − xn+1 = f (xn)

f ′(xn)

and the left-hand side has limit zero while the numerator of the right-hand side has
limit f (x0), it follows that

f (x0) = 0 or | f ′(xn)| → ∞.

(Note that the existence of f ′(x0) is not needed. It is enough that f ′(x) exists when
x �= x0 is near x0.)
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Ramanujan’s 6–8–10 Equation and Beyond
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Among Ramanujan’s many beautiful formulas is the 6–8–10 equation

64[(a + b + c)6 + (b + c + d)6 − (c + d + a)6

− (d + a + b)6 + (a − d)6 − (b − c)6]
× [(a + b + c)10 + (b + c + d)10 − (c + d + a)10

− (d + a + b)10 + (a − d)10 − (b − c)10]
= 45[(a + b + c)8 + (b + c + d)8 − (c + d + a)8

− (d + a + b)8 + (a − d)8 − (b − c)8]2


