- G. L. Mullen and C. Mummert, Finite Fields and Applications, American Mathematical Society, Providence, RI. 2007.
- I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, 3rd ed., John Wiley, New York 1972.
- J. Silverman, The Arithmetic of Dynamical Systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007.
- D. Vella and A. Vella, Cycles in the generalized Fibonacci sequence modulo a prime, this MAGAZINE 75 (2002) 294–299.
- 10. D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960) 525-532.
- 11. M. Ward, The arithmetical theory of linear recurring series, Trans. Amer. Math. Soc. 35 (1933) 600–628.

Fooling Newton's Method as Much as One Can

JORMA K. MERIKOSKI

Department of Mathematics and Statistics University of Tampere FI-33014 Tampere, Finland jorma.merikoski@uta.fi

TIMO TOSSAVAINEN

Department of Teacher Education University of Joensuu FI-57101 Savonlinna, Finland timo.tossavainen@joensuu.fi

We enjoyed reading how Horton [1] "fooled Newton's method" with an example where the sequence

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

converges but its limit does not satisfy f(x) = 0. Indeed, if

$$f(x) = \begin{cases} \pi - 2x \sin\frac{\pi}{x} & \text{for } x \neq 0, \\ \pi & \text{for } x = 0, \end{cases}$$
 (1)

then the Newton sequence is

$$x_{n+1} = x_n - \frac{1}{2} \frac{\pi x_n - 2x_n^2 \sin \frac{\pi}{x_n}}{\pi \cos \frac{\pi}{x_n} - x_n \sin \frac{\pi}{x_n}},$$

and, starting from $x_1 = 1/2$, we have $x_2 = 1/4$, $x_3 = 1/8$, ..., $x_n = 1/2^n \to 0$, although $f(0) = \pi \neq 0$.

Can f be differentiable? Note that the function in (1) is not differentiable at x = 0. Since we thought that a differentiable function would fool the method even better, we wanted to know if such a function exists. Simply modifying Horton's function, we found an example that readers might find even more surprising:

$$f(x) = \begin{cases} \pi - x^2 \sin \frac{\pi}{x^2} & \text{for } x \neq 0, \\ \pi & \text{for } x = 0. \end{cases}$$
 (2)

This function is differentiable and its Newton sequence is

$$x_{n+1} = x_n - \frac{1}{2} \frac{\pi x_n - x_n^3 \sin \frac{\pi}{x_n^2}}{\pi \cos \frac{\pi}{x_n^2} - x_n^2 \sin \frac{\pi}{x_n^2}}.$$

Again, if $x_1 = 1/2$, then $x_n = 1/2^n \to 0$, but $f(0) = \pi \neq 0$.

Can f be continuously differentiable? Because f in (2) is not continuously differentiable at x = 0, our next question was: Can we fool Newton's method with a continuously differentiable function?

The answer is negative. More generally, f' cannot be bounded near the limit point x_0 . (If f' were continuous, then it would be bounded there.) For, assume that $x_n \to x_0$ and f is continuous at x_0 . Since

$$x_n - x_{n+1} = \frac{f(x_n)}{f'(x_n)}$$

and the left-hand side has limit zero while the numerator of the right-hand side has limit $f(x_0)$, it follows that

$$f(x_0) = 0$$
 or $|f'(x_n)| \to \infty$.

(Note that the existence of $f'(x_0)$ is not needed. It is enough that f'(x) exists when $x \neq x_0$ is near x_0 .)

Acknowledgment. We thank one referee for suggestions that simplified the original manuscript considerably. We also thank the other referee for valuable suggestions.

REFERENCE

1. P. Horton, No fooling! Newton's method can be fooled, this MAGAZINE 80 (2007) 383-387.

Ramanujan's 6-8-10 Equation and Beyond

MARC CHAMBERLAND

Grinnell College Grinnell, IA 50112 chamberl@math.grinnell.edu

Among Ramanujan's many beautiful formulas is the 6–8–10 equation

$$64[(a+b+c)^{6} + (b+c+d)^{6} - (c+d+a)^{6} - (d+a+b)^{6} + (a-d)^{6} - (b-c)^{6}]$$

$$\times [(a+b+c)^{10} + (b+c+d)^{10} - (c+d+a)^{10} - (d+a+b)^{10} + (a-d)^{10} - (b-c)^{10}]$$

$$= 45[(a+b+c)^{8} + (b+c+d)^{8} - (c+d+a)^{8} - (d+a+b)^{8} + (a-d)^{8} - (b-c)^{8}]^{2}$$