rational numbers rather than integers is given by $(x / w, y / w, z / w)$, where x, y, z, w are given by Catalan's formulas.

References

[1] A. B. Ayoub, Integral solutions to the equation $x^{2}+y^{2}+z^{2}=u^{2}$: a geometric approach, this MAGAZINE, 57 (1984) 222-223.
[2] L. E. Dickson, History of the Theory of Numbers, 4th edition, 2, Chelsea, New York, 1966, p. 266.
[3] I. Niven and H. Zuckerman, Introduction to the Theory of Numbers, 4th edition, John Wiley \& Sons, New York, 1980.

Simultaneous Triangle Inequalities

Murray S. Klamkin

University of Alberta
Edmonton, Alberta
Canada T6G 2E1
It is a well-known result that the necessary and sufficient conditions that three positive numbers be the lengths of the sides of some triangle are that

$$
\begin{equation*}
b+c>a, \quad c+a>b, \quad a+b>c . \tag{1}
\end{equation*}
$$

Clearly it then follows that

$$
\begin{equation*}
(b+c-a)(c+a-b)(a+b-c)>0 . \tag{2}
\end{equation*}
$$

Also, it is easy to see that for $a, b, c>0,(2) \Rightarrow(1)$. For at most one of the three factors in (2) can be $\leqslant 0$ and this would violate (2). The latter inequality is also equivalent to

$$
(a+b+c)(b+c-a)(c+a-b)(a+b-c)>0
$$

or, by multiplying out, to

$$
\begin{equation*}
2\left(b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right)>0 . \tag{3}
\end{equation*}
$$

By Heron's formula for the area F of a triangle [1], (3) is given more compactly as

$$
16 F^{2}>0 .
$$

As an extension of the above results, one can ask does there exist a polynomial inequality in the n positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ which implies that any three of the numbers are lengths of sides of a triangle. Offhand one would expect that such a polynomial inequality exists and also that its degree is at least of order $k n$. Surprisingly, there is such a polynomial of degree 4 for all $n>3$. Formally, our result is as follows:

If $a_{1}, a_{2}, \ldots, a_{\mathrm{n}}>0$ for $n \geqslant 3$ and

$$
\begin{equation*}
\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)^{2}>(n-1)\left(a_{1}^{4}+a_{2}^{4}+\cdots+a_{n}^{4}\right), \tag{4}
\end{equation*}
$$

then a_{i}, a_{j}, a_{k}, for all $i \neq j \neq k$, are lengths of sides of a triangle.
Our proof is by induction. First we show that (4) implies that

$$
\begin{equation*}
\left(a_{2}^{2}+a_{3}^{2}+\cdots+a_{n}^{2}\right)^{2}>(n-2)\left(a_{2}^{4}+a_{3}^{4}+\cdots+a_{n}^{4}\right), \tag{5}
\end{equation*}
$$

where the left out term, a_{1}, is arbitrary. After some elementary algebra involved in completing a square, (4) can be shown to be equivalent to

$$
0>\left\{a_{1}^{2}-S_{2} /(n-2)\right\}^{2}-\left\{S_{2}^{2}-(n-2) S_{4}\right\}\{n-1\} /\{n-2\}^{2},
$$

where $S_{m}=a_{2}^{m}+a_{3}^{m}+\cdots+a_{n}^{m}$. Consequently, (4) $\Rightarrow(5)$. Then by induction,

$$
\left(a_{i}^{2}+a_{j}^{2}+a_{k}^{2}\right)^{2}>2\left(a_{i}^{4}+a_{j}^{4}+a_{k}^{4}\right)
$$

which corresponds to (3).
Inequality (4) arose in my generalization of problem 1087, Crux Mathematicorum, 11(1985) 289, i.e., there exists a regular ($n-1$)-dimensional simplex $A_{1} A_{2} \cdots A_{n}$ of edge length a and a point P in its space such that $P A_{i}=a_{i}, i=1,2, \ldots, n$, if and only if inequality (4) holds.

Note that by applying Ptolemy's inequality in 3 -space to the tetrahedron $P-A_{i} A_{j} A_{k}$, it follows that a_{i}, a_{j}, a_{k} are lengths of sides of a triangle.

It is to be noted that whereas (3) is a necessary and sufficient condition on three positive numbers to be the lengths of sides of a triangle, (4) is only a sufficient condition that any three of n positive numbers are lengths of sides of a triangle. For example, consider the four numbers $5,5,5$, and 9 . Any three of them are lengths of sides of a triangle, but (4) for $n=4$ is not satisfied. As an open problem, find a polynomial inequality which is both a necessary and sufficient condition for the latter property. Finally, as another open problem, find a polynomial inequality on n positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ such that any r of them, with $n>r>3$, are lengths of sides of an r-gon.

Reference

[1] O. Bottema, et al, Geometric Inequalities, Wolters-Noordhoff, Groningen, The Netherlands, 1969.

On the Sum of Consecutive Kth Powers

Jeffrey Nunemacher

Ohio Wesleyan University
Delaware, Ohio 43015

Robert M. Young

Oberlin College
Oberlin, Ohio 44074
In the early 18th century, James Bernoulli discovered an elegant formula for the sum of consecutive K th powers:

$$
\begin{equation*}
1^{K}+2^{K}+\cdots+(n-1)^{K}=\sum_{i=0}^{K}\binom{K}{i} B_{i} \frac{n^{K+1-i}}{K+1-i} \quad(K=1,2, \ldots) . \tag{1}
\end{equation*}
$$

Here, $B_{0}, B_{1}, B_{2}, \ldots$ are the so-called Bernoulli numbers which arise as coefficients in the power series expansion of $x /\left(e^{x}-1\right)$:

$$
\frac{x}{e^{x}-1}=\sum_{K=0}^{\infty} \frac{B_{K}}{K!} x^{K} \quad(\text { valid for }|x|<2 \pi) .
$$

The first few values of B_{K} are

$$
\begin{array}{ll}
B_{0}=1, & B_{1}=-\frac{1}{2}, \\
B_{2}=\frac{1}{6} \\
B_{3}=0, & B_{4}=-\frac{1}{30},
\end{array} B_{5}=0 .
$$

It is well known that if K is odd and greater than 1 , then $B_{K}=0$, while if K is even and greater

