Proof Without Words: Fibonacci Tiles

\[F_{n+1}^2 = 2F_{n+1}F_n - F_n^2 + F_{n-1}^2 \]
\[= 2F_{n+1}F_n^2 + F_{n-1}^2 - F_n^2 \]
\[= 2F_nF_{n-1} + F_{n-1}^2 + F_{n-1}^2 \]
\[= F_{n+1}F_n + F_nF_{n-1} + F_{n-1}^2 \]
\[= F_{n+1}F_{n-1} + F_{n-1}^2 + F_nF_{n-1} \]

\[F_n^2 = F_{n+1}F_{n-1} + F_{n-1}F_{n-2} - F_{n-2}^2 \]

\[F_{n-1}^2 = F_n^2 + 3F_{n-1}^2 + 2F_{n-1}F_{n-2} \]

\[F_n = F_{n+1}F_{n-2} + F_{n-1}^2 \]

\[F_n \] denotes the \(n \)th Fibonacci number, where \(F_{n+1} = F_n + F_{n-1}, \) \(F_0 = 0, \) \(F_1 = 1. \) Obvious assumptions concerning the least value of \(n \) in each identity should be made as required. Further visual proofs of Fibonacci identities may be found in:

A. Brousseau, Fibonacci numbers and geometry, Fibonacci Quarterly 10 (1972) 308–318.

—Richard L. Ollerton
School of Computing & Mathematics
University of Western Sydney
Kingswood DC1797, Australia
r.ollerton@uws.edu.au