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By melding this program with one that generates all solutions in nonnegative integers
of e, +e,+ -+ +e,=n, the reader can verify, as we did, the results of our article

for specific values of n, ¢, and p.
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Volumes of Cones, Paraboloids, and Other
““Vertex Solids”’

PAUL B. MASSELL

United States Naval Academy
Annapolis, MD 21402

While performing some calculations involving the volume of a solid circular paraboloid
z2(r)=h(1 —(r/a)?*) (with h>0) as illustrations of the Divergence Theorem in
vector calculus, the author noticed that the ratio of the volume of the portion of the
solid paraboloid above the polar plane to that of the solid cylinder with the same base
and height h (its associated solid cylinder) is equal to 1/2 for all values of the radius
a. A natural question is whether this ratio holds for elliptical paraboloids or for
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paraboloids with any simple curve as a base. Another question is whether there is a
similar ratio that is independent of the shape and size of the base for exponents other
than 2 in the formula for z(r). Our theorem answers these questions for a class of
solids we call vertex solids; a class that includes cones and paraboloids.

We will now define vertex solids. Let r = g(6) describe a simple closed curve in
the polar plane such that 0 < g(8) for 0 < 6 < 2. Let the point V be on the positive
z-axis with 5 = h (this will be the top vertex for the vertex solid). For each fixed 8 in
[0,277], consider the curves z,(r) =h(1 — (r/g(8))*) where k is a positive constant
(if g(8) =0, let z,(r) =h). If k is an integer, then z,(r) is clearly the unique curve
of kth degree that goes through V and the point (8, g(6),0) in the polar plane and
that has the property diz/dri=0 at V for i=1,2,...,k—1 (for fixed 6). Now
consider r and 6 as independent variables and view the above expression for
2 =z,(r,0) as representing a surface. If r=g(8) describes an ellipse, then z,
represents an elliptical cone and z, represents an elliptical paraboloid. For all k > 0,
we call the solid defined by the set of points (r,0,z) satisfying 0<r <g(0),
0<0<2m, 0<2<z(r,0) a vertex solid. Its associated solid cylinder is the set of
points (r, 8, z) satisfying 0 <r < g(8), 0<0<2m, 0<z<h.

Tueorem. The ratio of the volume of the vertex solid of degree k to that of its
associated solid cylinder is k /(k + 2). (Thus for an elliptical cone the volume is 1/3
that of its associated cylinder’s volume abh; for an elliptical paraboloid its volume is
1/2 of mwabh. Here, a and b are the minor and major radii of the ellipse. The ratios
1/3 and 1/2 hold for cones and paraboloids (respectively) with any base that is
describable by a simple closed curve.)

Proof.

vol(vertex solid) = fzvfg(e):k(r, 0) -rdrd6
o 7o

9)

vol(solid cylinder) = fzﬂfg h-rdrdf=A.
o ‘o

Substitution of the expression for z, and a fairly simple integration reveals that the

ratio of the volume of the vertex solid to that of its associated solid cylinder is

A-(2/(k+2)A &k
A T k+2

Notes:

(1) This result easily can be extended to the case where the base of the vertex solid
does not lie below the vertex V. In this case, the vertex solid is not entirely contained
in its solid cylinder.

(2) As k increases, the vertex solid occupies more and more of its associated solid
cylinder, and in the limit occupies all of it.

(3) Consider the cross sections of the vertex solid and its solid cylinder generated
by the plane 6 = ¢ (constant). (Assume g(c) > 0.) Denoting them by C, and C,, it’s
easy to see that area(C,)/area(C,) =k /(k + 1).

I would like to thank my colleague Tom Mahar for a very helpful discussion of this result and Bruce

Richter for encouraging me to publish it. Thanks are also due to two referees for several helpful suggestions
for improving the readability of the paper.
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