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The Hometown Muckraker is a small newspaper with a few writers and layout person- 
nel, and an editorial staff of four. When major policy decisions require that the editorial 
staff vote, the Editor-in-Chief gets 3 votes; the Managing Editor gets 2 votes; and the 
News Editor and Feature Editor each get 1 vote, for a total of 7. A majority (4 votes) 
is needed to pass a motion. 

Lately, however, the Managing Editor has begun to feel that she has no more say in 
policy decisions than the News Editor or the Feature Editor has. In a private meeting 
with the Editor-in-Chief, she was told, "That's ridiculous; you have twice as many 
votes as they do, and therefore you have twice as much say." Is the Editor-in-Chief 
right? Or is it in fact true that the News Editor and the Feature Editor have just as 
much influence as the Managing Editor? 

In this note we show that not only is the Editor-in-Chief wrong, but there is no way 
to remedy the problem, at least in the sense of restructuring the voting system so that 
there is the following hierarchy of influence, or say on policy matters: 

(i) The Editor-in-Chief has the most influence, but less than half of the total inju-
ence. 

(ii) The Managing Editor has less say than the Editor-in-Chief but more influence 
than the other two editors. 

(iii) The News and Feature Editors have equal influence, but less than their senior 
editors. 

Now consider a second scenario: Pennsylvania has decided to secede from the 
United States and invites its neighbors to do the same. There are three takers: Ohio, 
New York, and West Virginia. The four states decide to keep the existing geographical 
boundaries in place and form the Republic of PAIN (Pennsylvania and its Neighbors). 

An electoral college system is instituted to elect the head of the executive branch 
of government, who is called the Big Cheese. An integer number of electoral votes 
for each state is chosen which is roughly proportional to population. (How to fairly 
apportion the total number of votes among the four states is another problem entirely; 
potential solutions to that problem have been much studied, and we shall assume that 
the framers of the Republic of PAIN are oblivious to the complexity of that problem 
and have apportioned the electoral votes in a manner satisfactory to them. Balinski 
and Young [I] provide a comprehensive treatment of the apportionment problem.) A 
candidate must receive a strict majority of the electoral votes in order to become the 
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Big Cheese. These votes are distributed as follows: 

New York 38 
Pennsylvania 25 
Ohio 23 
West Virginia 4 

Since there are a total of 90 electoral votes, 46 are required for a victory. 
A provision is in place to reapportion the electoral votes based on population 

changes. However, the population of each state continues to grow at a (universally) 
constant percentage rate, so that the four states maintain their ratios to the total popu- 
lation. However, after a few Big Cheese elections, West Virginia legislators propose a 
restructuring of the electoral college system, because they have begun to believe that 
their citizens actually have no influence whatsoever in Big Cheese elections. Unfortu- 
nately, their claim falls on deaf ears, because the other three states argue that the small 
number of electoral votes West Virginia casts is perfectly appropriate for its size and 
that these four votes do matter. Who is right? 

Perhaps in this second scenario it is easier to see the validity of the objection: Any 
two of Ohio, New York, or Pennsylvania can agree on a Big Cheese candidate, and that 
candidate will win. Conversely, no candidate can win the election without carrying two 
of these states. As we will argue more carefully in the next section, it is in fact true that 
West Virginia's votes don't count; the key point here is that West Virginia can never 
cast the deciding votes. But if it is inappropriate for the Republic of PAIN to allocate 
votes in proportion to population, then how should the voting system be restructured 
to give West Virginia some measure of influence befitting its size? Or will it turn out, 
as in the previous example, that the desired objective cannot be achieved? 

The Banzhaf Power Index The tool which we shall use to measure influence in each 
of our two hypothetical examples is called the Banzhaf power index, developed by 
attorney John Banzhaf [2] in the 1960s to argue that among the six districts of Nassau 
County, New York, represented by the Board of Supervisors, only the three largest 
districts wielded any real influence. (See also chapter 2 of the book by Tannenbaum 
and Arnold [4].) Informally speaking, to measure a voting party's influence, we ask, 
"How likely is it (indeed, does it occur at all) that this party can cast deciding votes?" 

Following Tannenbaum and Arnold [4], we assume a finite number of voting parties 
called players, denoted PI, P2, . . . , P,.Player Picasts a positive integer number of 
votes, vi.The number of votes q needed to pass a motion shall be called the quota, and 
we assume 

We shall call this a weighted voting system (WVS) of size n ,  and represent it by 

and assume v l  > v 2  2 . . . 2 v,. 
We shall also stipulate that vi < q holds for each i ;  otherwise it would be possible 

for some Pito vote alone and pass a motion. But in addition, we assume that for all i ,  

If this were not true for some i, then Piwould have the power to prevent any motion 
from passing; the votes of all the other players would not exceed the quota. We call 
such a condition veto power. 
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A coalition in a WVS is a subset of the players. A winning coalition is a coalition 
for which the combined votes of the players exceed the quota. Otherwise, we have 
a losing coalition. We call a player in a winning coalition critical if the removal of 
that player results in a losing coalition. The presence of a critical player in a winning 
coalition will be called a critical instance; if a winning coalition has k critical players, 
we shall say that there are k critical instances corresponding to that coalition. 

We are now ready to define the Banzhaf power index for a player Pi as the ratio of 
the number of instances in which Pi is critical to the total number of critical instances. 
We shall denote this ratio by B(Pi). Note that since each B(Pi) is a percentage, we 
have 

The aim of the Banzhaf power index is to measure the percentage of the total amount 
of power each player in the WVS possesses. The underlying philosophy is that power 
is characterized by the ability to cast deciding votes, and if there is a player who can 
never do this, then that player has no effective power. 

There are other measures of power in weighted voting systems, such as the Shapley- 
Shubik power index, which in fact predated the Banzhaf index by a decade. The 
Shapley-Shubik model, however, is better suited to situations for which the order in 
which the players vote is a factor. In that case, one considers all n! permutations of 
the n-player coalition; associated to each one is a unique player whose votes bring the 
cumulative total up to (or past) the quota, if all players vote in favor of a motion. That 
player is considered critical. The Shapley-Shubik power index for Pi is then the total 
number of instances in which Pi is critical, divided by n! . 

The Banzhaf and Shapley-Shubik power distributions for a given WVS can some- 
times agree, but they can also be dramatically different. (Chapter 9 of Taylor's book [5] 
provides an example, and also other models of power.) We have chosen the Banzhaf 
model here because we have no reason to distinguish the various permutations of a 
given winning coalition. Our tacit assumption is that all players vote at once, and each 
possesses no knowledge of how the others are voting. 

With the aid of Banzhaf's power index, let us verify that West Virginia is powerless 
in the Republic of PAIN example, represented by the WVS [46; 38,25,23,4]. The 
players here are Pi ,  P2, P3, and P4, corresponding to New York, Pennsylvania, Ohio, 
and West Virginia, respectively. The winning coalitions, along with their weights (total 
numbers of votes cast), are as follows: 

Coalition Weight 

Observe that no winning coalition to which West Virginia (P4) belongs has a weight 
exceeding the quota by less than 4 votes. For this reason, West Virginia is not a critical 
player in any winning coalition, so that B(P4) = 0. This is already an interesting find- 
ing, but let us look closer, and note that in each 2-player winning coalition, each player 
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is critical. This gives 6 critical instances so far. Then when we examine {PI,P2,P3}, 
we see that the removal of any one player from this coalition results in a 2-player 
winning coalition; even without arithmetic we can see this by referring to the list of 
2-player winning coalitions. Hence {PI ,P2, P3}yields no critical instances. For the 
other 3-player winning coalitions, however, we find 

PI and P2are critical in {PI,P2, P4} 
PI and P3are critical in {PI,P3, P4} 
P2 and P3are critical in { P2, P3, P4} 

This gives another 6 critical instances. The 4-player winning coalition has no critical 
players (so that veto power is absent in this WVS), and we have a total of 12 critical 
instances, with each of PI, P2, and P3critical in 4 instances. Hence we find B(P1) = 
B(P2) = B(P3) = 113. 

The surprising revelation behind our analysis, then, is that not only does West Vir-
ginia have no power, but the other three states have equal power. So despite the propor-
tional representation apparently afforded by the electoral college system, the allocation 
of votes may as well be as follows: 0 to West Virginia and 1 to each of the other states, 
with 2 electoral votes needed to become the Big Cheese. (According to our stipulation 
that each vi should be positive, we would not consider [2; 1, 1, 1,O] to be an acceptable 
WVS. However, any WVS of the form [2m; m, m, m, 11, with m 2 2, would yield the 
same distribution of power as we find in the Republic of PAIN example.) The outcomes 
of all elections would be the same. 

No wonder, then, that West Virginia proposes a change. The good news is that 
change is possible; the bad news, as the following result reveals, is that the options are 
quite limited. 

THEOREM.In any 4-player WVS with no veto powel; there are only Jive possible 
power distributions: 

(a) B(Pi) = 1/4foreveryi. 
(b) B(P4) = 0 and B(Pi) = 113for i # 4. 
(c) B(P1) = 112 and B(Pi) = 116for i # 1. 
(d) B(P1) = B(P2) = 113 and B(P3) = B(P4) = 116. 
(e) B(Pl) = 5/12, B(P2) = B(P3) = 114, and B(P4) = 1/12. 

Moreovei; if v3 = v4, then alternatives (b) and (e) are not possible. 

The reader can check that alternative (c) holds in the Hometown Muckraker ex-
ample, so that indeed, the Managing Editor has no more power in the Banzhaf model 
than the News and Feature Editors have. Furthermore, it is impossible for the editorial 
staff to effect a hierarchy of power that is consistent with rank. 

In the Republic of PAIN example, alternative (b) holds, and it would seem that the 
only sensible way to restructure the WVS so that all four states have some power, in 
amounts commensurate with their populations, is to effect alternative (e). The WVS 
[ l l ;  7 , 5 , 4 , 2 ]  does this, and if Ohio should object to having only twice as many 
electoral votes as West Virginia, even though its population is over six times larger, 
then perhaps the WVS [13; 8 ,6 ,  6, 11 would be acceptable; the power distribution still 
corresponds to alternative (e). Another example is [90; 80,65,20,5], in which Penn-
sylvania casts over three times as many votes as Ohio, a condition which might be 
psychologically disturbing to Ohio residents. Yet the power index for the two states is 
the same. The point is that, given two players Pi and Pj, the ratio vi/ v j  is not a reliable 
indicator of comparative power. 
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To further reinforce the point, consider the 3-player WVS [13; 12, 11,2]. All 
2-player coalitions are winning coalitions, and in all three cases, both players are 
critical. But in the 3-player coalition, none of the players is critical. Thus the total 
number of critical instances is 6, and each player is critical in two instances. Hence 
each player has power index 113. This is true despite the fact that P1 casts six times as 
many votes as P3. 

We include a fairly uninspiring proof of the theorem; one objective of this note is 
to stimulate interest in finding a slicker way to analyze weighted voting systems of 
a given size. We have treated size 4 because the brute force argument we give is not 
too cumbersome. One pleasing aspect of the proof is the revelation that one need only 
consider the various combinations of winning coalitions, and the proof relies only on 
the absence of veto power and not on the actual value of the quota q .  Nor must one 
ever consider by how many votes a coalition wins; one need only know whether the 
coalition wins or loses. The proof also reveals that no matter the size of a WVS, only 
finitely many power distributions are possible (a fact which may be readily evident 
to a combinatorialist), so that in general, it is not possible to construct a WVS with a 
prescribed power distribution. 

Proof of the Theorem We show that only five power distributions are possible in 
a 4-player WVS by exhausting the possible compositions of the set of winning coali- 
tions. We use three important consequences of the absence of veto power: 

1. The 4-player coalition is a winning coalition that does not yield any critical in- 
stances (since if one player were critical, then that player would have veto power). 
Therefore all critical instances occur among the 2- and 3-player winning coalitions. 

2. All of the 3-player coalitions must be winners; if not, the missing player has veto 
power, since the 4-player coalition is certainly a winner. Hence the various cases are 
distinguished completely by which 2-player coalitions are winners. (We must point 
out, however, that changing the collection of 2-player winning coalitions will affect 
instances of criticality in 3-player winning coalitions, so the 3-player coalitions 
must still be examined.) 

3. In any 2-player winning coalition, both players must be critical, since we do not 
permit single-player winning coalitions. 

Our work is further simplified by observing that critical instances occurring in 3-player 
winning coalitions can always be detected by referring to the list of winning 2-player 
coalitions. 

Since we need only consider cases distinguished by which 2-player coalitions win, 
let us start by observing the following rankings, in descending order of total weight, 
for 2-player winning coalitions. 

Note that what is uncertain is how { P i ,  Pq} and { P 2 ,  P3} compare. However, if one 
of these coalitions wins, then the other loses. In fact, if any 2-player coalition wins, 
then its complement loses; for example, if { P I ,  P2] wins, then { P 3 ,  P4} must lose, for 
otherwise we would have 

v l + v 2  2 q  and v 3 + v 4 2 q ,  

so that the strict majority requirement 
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V l  + u2 + v3 + v4 
4 > 2 

cannot hold for the quota. 
It follows that there cannot be more than three 2-player winning coalitions in a 

4-player WVS and that the coalitions {P2,P4)and {P3,P4)always lose. 
We now consider the various cases. First, if there are no 2-player winning coalitions, 

then every player is critical in each of the four 3-player winning coalitions. Hence the 
total number of critical instances is 12, and each player is critical three times, so that 
B(Pi) = 114 for every i,  which is alternative (a). 

Next suppose that there is only one 2-player winning coalition; then it must be 
{ P I ,P2),  SO that P1 and P2 are critical in this coalition and also in the coalitions 
{ P l ,P2, P3) and { P I ,P2, P4].On the other hand, P3 and P4 are not critical in these 
last two coalitions but are critical in the other two 3-player coalitions. Also, P1 is criti-
cal in { P I ,P3,P4],and P2 is critical in {P2,P3,P4).Hence we have 4 critical instances 
for each of P1 and P2 and 2 critical instances for each of P3 and P4, SO that alternative 
(d) results. 

If there are two winning 2-player coalitions, then they must be { P I ,P21 and { P I ,P3),  
and we note that this can only occur if v3 > v4 (for if v3 = v4, then { P I ,P3}winning 
would imply that { P I ,P4] wins as well). P1 is critical in each of the three 3-player 
coalitions containing P1, yielding 5 critical instances for P1. Then P2 is critical in 
{ P l ,P2, P4) and {P2,P3, P4];P3 is critical in { P I ,P3, P4] and {P2,P3,P4);and the 
only 3-player coalition for which P4 is critical is {P2,P3, P4].Again we have 12critical 
instances in total, and we find that alternative (e) holds in this case. 

There are now two cases involving three winning 2-player coalitions. We may have 
{ P I ,P2], { P I ,P3],and { P I ,P4) winning, yielding 6 critical instances so far. Then 
we observe that only P1 is critical in the coalitions { P I ,P2, P3),  { P I ,P2, P4],and 
{ P I ,P3, P4],while all three players are critical in {P2,P3, P4].The result is alterna-
tive (c). 

With v3 > v4 we may now encounter the case in which { P I ,P2), { P I ,P3), and 
{P2,P3)win. Note that here, P4 is never a critical player, because removing P4 from 
any 3-player coalition to which it belongs leaves one of the three winning 2-player 
coalitions. Hence B(P4)= 0. Furthermore, removing any player from { P I ,P2, P3} 
still leaves a winning coalition, but in the other three 3-player coalitions contain-
ing P4, the other two players are critical. Here, as in every case, we have a total 
of 12 critical instances, with each of P1, P2, and P3 critical 4 times. Hence we find 
B(P1) = B(P2) = B(P3) = 113, so that alternative (b) holds. The proof is complete. 

Next steps We pose the following questions for investigation: 

For weighted voting systems of size n, is there a formula in terms of n for the number 
of feasible power distributions? (In case n = 3, a simple check reveals that all three 
players must have equal power, so that only one power distribution is possible in the 
absence of veto power.) 
With a complete enumeration of the power distributions feasible for weighted voting 
systems of size n,  can one efficiently generate a complete list of feasible power 
distributions for size n + 1 weighted voting systems? 
If a certain power distribution is desired, can one efficiently construct a WVS with 
the feasible power distribution that comes closest to the ideal (by some measure)? 
We might expect that the solution to this problem is dependent on the choice of norm 
used to measure deviation from the ideal power distribution. Such norm-dependence 
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does arise in the apportionment problem mentioned above. One incarnation of that 
problem is to fairly mete out congressional representatives to states in direct propor-
tion to the state's population. The ideal share for each state, however, is in general 
not an integer, so given a positive integer partition of the total number of represen-
tatives, one wishes to measure the overall deviation from the ideal. An article by 
Ernst [3] gives a thorough discussion. 
If a player is to be removed from an n-player WVS, can an (n - 1)-player WVS be 
efficiently constructed so as to preserve, as nearly as possible, the existing distribu-
tion of power among the remaining players? 

One final observation is that in the case of a 4-player WVS, a strict hierarchy 
of power is impossible; that is, there are always at least two players with the same 
Banzhaf power index. The least value of n for which we can have 

turns out to be n = 5. An example, due to the author, Christopher Carter Gay, and 
Jabari Harris, is the WVS [9; 5 ,4 ,  3 ,2 ,  11, which yields Banzhaf power distribution 

(The reader can check that the WVS [8; 5 , 4 , 3 , 2 ,  11 does not induce the above 
Banzhaf power distribution.) We have also found, in unpublished work, that this is 
the only power distribution, of the 35 possibilities in the 5-player case, with strict 
hierarchy of power. What we have not yet found is an efficient way to analyze the 
5-player problem in order to establish the number of power distributions feasible or 
generate the complete list of these power distributions. 

The most naive attempt to effect strict hierarchy of power with n = 6, the WVS 
[ l l ;  6 , 5 , 4 ,  3 ,2 ,  11, fails to deliver, for this WVS yields power distribution 

However, [15; 9 , 7 , 4 ,  3 ,2 ,  11 yields power distribution 
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