Problems for Session B

maa.org/putnam

The 84th William Lowell Putnam Mathematical Competition 2023

- **B1** Consider an *m*-by-*n* grid of unit squares, indexed by (i, j) with $1 \le i \le m$ and $1 \le j \le n$. There are (m-1)(n-1) coins, which are initially placed in the squares (i, j) with $1 \le i \le m-1$ and $1 \le j \le n-1$. If a coin occupies the square (i, j) with $i \le m-1$ and $j \le n-1$ and the squares (i+1, j), (i, j+1), and (i+1, j+1) are unoccupied, then a legal move is to slide the coin from (i, j) to (i+1, j+1). How many distinct configurations of coins can be reached starting from the initial configuration by a (possibly empty) sequence of legal moves?
- **B2** For each positive integer n, let k(n) be the number of ones in the binary representation of $2023 \cdot n$. What is the minimum value of k(n)?
- B3 A sequence y_1, y_2, \ldots, y_k of real numbers is called *zigzag* if k = 1, or if $y_2 y_1, y_3 y_2, \ldots, y_k y_{k-1}$ are nonzero and alternate in sign. Let X_1, X_2, \ldots, X_n be chosen independently from the uniform distribution on [0, 1]. Let $a(X_1, X_2, \ldots, X_n)$ be the largest value of k for which there exists an increasing sequence of integers i_1, i_2, \ldots, i_k such that $X_{i_1}, X_{i_2}, \ldots, X_{i_k}$ is zigzag. Find the expected value of $a(X_1, X_2, \ldots, X_n)$ for $n \ge 2$.
- **B4** For a nonnegative integer n and a strictly increasing sequence of real numbers t_0, t_1, \ldots, t_n , let f(t) be the corresponding real-valued function defined for $t \ge t_0$ by the following properties:
 - (a) f(t) is continuous for $t \ge t_0$, and is twice differentiable for all $t > t_0$ other than t_1, \ldots, t_n ;
 - (b) $f(t_0) = 1/2$;
 - (c) $\lim_{t \to t_k^+} f'(t) = 0$ for $0 \le k \le n$;
 - (d) For $0 \le k \le n 1$, we have f''(t) = k + 1 when $t_k < t < t_{k+1}$, and f''(t) = n + 1 when $t > t_n$.

Considering all choices of n and t_0, t_1, \ldots, t_n such that $t_k \ge t_{k-1} + 1$ for $1 \le k \le n$, what is the least possible value of T for which $f(t_0 + T) = 2023$?

- **B5** Determine which positive integers n have the following property: For all integers m that are relatively prime to n, there exists a permutation $\pi: \{1, 2, ..., n\} \to \{1, 2, ..., n\}$ such that $\pi(\pi(k)) \equiv mk \pmod{n}$ for all $k \in \{1, 2, ..., n\}$.
- **B6** Let n be a positive integer. For i and j in $\{1, 2, ..., n\}$, let s(i, j) be the number of pairs (a, b) of nonnegative integers satisfying ai + bj = n. Let S be the n-by-n matrix whose (i, j)-entry is s(i, j).

For example, when
$$n = 5$$
, we have $S = \begin{bmatrix} 6 & 3 & 2 & 2 & 2 \\ 3 & 0 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & 1 & 2 \end{bmatrix}$.

Compute the determinant of S.