A Quick Solution of Triangle Counting

LEONARD M. SMILEY
University of Alaska
Anchorage, AK 99508

The first law of famous counting problems must be that each solver regards his or her approach as the only truly simple one. Undissuaded, and motivated by the recent reminiscence [1], I offer the following. Problem. Find a formula for T_n, the total number of triangles in an equilateral triangle of side n tiled by equilateral triangles of side 1 (see Figure 1).

A triangle is new if it contains a triangle from the bottom row of the diagram. The number of new triangles is $T_{n+1} - T_n$. A triangle is crusty if it contains a triangle from the shaded 'crust'. All triangles are either nablas (∇) or deltas (Δ).

The number of new but not crusty triangles is clearly $T_{n-1} - T_{n-2}$. The new, crusty deltas have their top apices "beaded." There are $2n + 1$ of them. The new, crusty nablas have their bottom apices "circled." There are n of them. Thus

$$T_{n+1} - T_n = T_{n-1} - T_{n-2} + 3n + 1.$$

This is an unremarkable recurrence, which, when supplied with $T_1 = 1$, $T_2 = 5$ and $T_3 = 13$ produces

$$T_n = \frac{(-1)^n + 4n^3 + 10n^2 + 4n - 1}{16}.$$

The characteristic cubic is particularly nice to factor by grouping and the methods of [2, Ch. 5] or [3, Sec. 7.3] determine the coefficients of T_n easily. For computer algebra converts, one call to the genf function in MACSYMA produces the answer as shown here.

REFERENCES