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An Improper Application of Green’s Theorem
Robert L. Robertson (rroberts@drury.edu), Drury University, Springfield, MO 65802

The improper Riemann integral ∫ ∞

0

sin x

x
dx (1)

converges to π/2, but how is this value calculated? Since the antiderivative of f (x) =
sin x/x cannot be expressed as a finite combination of elementary functions (see [1]),
we must look beyond the Fundamental Theorem of Calculus. We present here a way
to calculate (1) using only techniques covered in calculus, but we first present two
standard calculations.

First, consider the Laplace transform F of sin x/x :

F(s) =
∫ ∞

0

sin x

x
e−sx dx .

As s becomes large, the kernel e−sx converges rapidly to 0 as long as x > 0. Since
|sin x/x | < 1 for x > 0, we have |F(s)| < 1/s, which gives lims→∞ F(s) = 0.

Assuming that differentiation with respect to s may be perfomed either before or
after the integration, we have

d F

ds
= −

∫ ∞

0
(sin x)e−sx dx = −1

s2 + 1
.

Hence F(s) = − arctan(s) + C , where C is a constant. But lims→∞ F(s) = 0, so C
must be π/2. Thus, since C = F(0),∫ ∞

0

sin x

x
dx = π/2.

For students with a solid background in integral calculus, the broad strokes of this
calculation are easy to follow. We took a leap, though, when we differentiated with
respect to s. This step, while justifiable, goes beyond topics covered in most calculus
texts (conditions under which derivatives may be passed across integral signs are not
given in [3], for example).

A second calculation of (1) is found in [4] (see pp. 278 and 189, Problems 6.14 and
6.15). This calculation starts with an improper double integral over the first quadrant:
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∫∫
R+×R+

e−xy sin x d A.

If we integrate first with respect to y, we get

∫ ∞

0

∫ ∞

0
e−xy sin x dy dx =

∫ ∞

0

sin x

x
dx .

On the other hand, integrating with respect to x first gives

∫ ∞

0

∫ ∞

0
e−xy sin x dx dy =

∫ ∞

0

1

1 + y2
dy.

It takes some work to prove, but changing the order of integration in the improper
double integral does not change its value (see [2] for a very nice worksheet detailing
the steps in the proof). Therefore,

∫ ∞

0

sin x

x
dx =

∫ ∞

0

1

1 + y2
dy = π/2.

Improper double integrals, however, are not emphasized in most calculus texts.
Green’s theorem, though, is a well-developed topic in calculus, and we use it to give

a new calculation of (1). We first recall Green’s theorem.

Green’s Theorem. Let � be a positively-oriented, piecewise-smooth, simple closed
curve in R

2, and suppose D is the region enclosed by �. If P and Q are continuously
differentiable on an open set containing D, then

∫
�

P(x, y) dx + Q(x, y) dy =
∫∫

D
(Qx(x, y) − Py(x, y)) d A.

For our calculation, we choose Q = 0 and search for P such that P(x, 0) =
sin x/x . Looking at the double integral in Green’s theorem, we see that we would like
Py to be relatively easy to integrate. The Laplace transform calculation suggests that
we try

P(x, y) =

⎧⎪⎨
⎪⎩

e−xy sin x

x
if x 
= 0

1 if x = 0

.

This function is continuously differentiable on R
2, and if (x, y) is restricted to the first

quadrant, then P(x, y) converges to 0 as (x, y) moves far from the origin. These two
properties are essential in what follows.

Given a positive number R, define a positively-oriented square �R = �R
1 + �R

2 +
�R

3 + �R
4 as in the figure. Green’s theorem and Fubini’s theorem tell us that

∫
�R

P(x, y) dx = −
∫∫

D
Py(x, y) d A =

∫ R

0

∫ R

0
e−xy sin x dx dy.
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The antiderivative of e−xy sin x with respect to x is −(e−xy(cos x + y sin x))/(1 + y2),

so we have∫
�R

P(x, y) dx = −
∫ R

0

(
e−Ry(cos R + y sin R)

1 + y2
− 1

1 + y2

)
dy

= arctan(R) −
∫ R

0

e−Ry(cos R + y sin R)

1 + y2
dy. (2)

Since the line integral decomposes into a sum over the segments of �R , (2) is equiva-
lent to ∫

�R
1

P(x, y) dx +
∫

�R
2

P(x, y) dx +
∫

�R
3

P(x, y) dx +
∫

�R
4

P(x, y) dx

= arctan(R) −
∫ R

0

e−Ry(cos R + y sin R)

1 + y2
dy.

Natural parameterizations of the four segments that make up �R transform this into

∫ R

0

sin x

x
dx = arctan(R) +

∫ R

0

e−x R sin x

x
dx −

∫ R

0

e−Ry(cos R + y sin R)

1 + y2
dy.

We next show that the last two integrals converge to 0 as R → ∞. Then arctan(R)

gives us the value π/2.
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Figure 1. The closed curve �R

We handle the last integral first. If y ≥ 0, then |y sin(R) + cos(R)| ≤ y + 1, so

∣∣∣∣
∫ R

0

e−Ry(cos R + y sin R)

1 + y2
dy

∣∣∣∣ ≤
∫ R

0
e−Ry(y + 1) dy

= −(R + 1)e−R2 + 1

R
− e−R2 − 1

R2
,

and both of these terms go to 0 as R → ∞.
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For the other integral, since |sin x/x | < 1 for x > 0, we get

∣∣∣∣
∫ R

0

e−x R sin x

x
dx

∣∣∣∣ ≤
∫ R

0
e−x R dx = 1 − e−R2

R
,

which also converges to 0 as R → ∞.
We note that these estimates are identical to those used in [2] to show that the

order of integration makes no difference in the double integral. Thus, we can view this
Green’s Theorem calculation as a modification of the double integral method.
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◦

Partial Fractions by Substitution
David A. Rose (drose@flsouthern.edu), Florida Southern College, Lakeland, FL 33801

The standard method for finding the partial fraction decomposition for a rational
function involves solving a system of linear equations. In this note, we present a quick
method for finding the partial fraction decomposition of a rational function in the spe-
cial case when the denominator is a power of a single linear or irreducible quadratic
factor, that is, the denominator is either (ax + b)k or (ax2 + bx + c)k with 4ac > b2.
For example, we note that substituting t + 2 for x and then expanding the numerator
transforms

x2 + 4x − 3

(x − 2)3
to

t2 + 8t + 9

t3
.

Since this last expression splits into

1

t
+ 8

t2
+ 9

t3
,

it follows that our original function has

1

x − 2
+ 8

(x − 2)2
+ 9

(x − 2)3

as its partial fraction decomposition. We observe that the numbers 9, 8, and 1 in the
numerators of the decomposition could also have been obtained as the remainders by
successive division of x2 + 4x − 3 by x − 2. This method was considered by Kung
[4] in this journal. Our substitution-expansion method avoids such repeated division
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