Readers can proceed similarly for the \((0,2,0,1,6,2)\)-residue set associated with \((113)_{11}\) and \((113)_{23}\), and the \((0,2,0,3,4,2)\)-residue set associated with \((113)_{14}, (113)_{17}\), and \((113)_{25}\).

Although considerable attention has been given to \(n_3\)-configurations for the cases where \(n = 7, 8, 9, 10\) (see [1], [5], [7]), there appears to be no reference in the recent literature to work done on the \(113\)'s about a century ago. Thus, our puzzle’s focus on the case of \(n = 11\) has the added benefit of summarizing and updating some important earlier results on the \(113\)'s.

References

Proof without words:
Sum of squares

\[
1^2 + 2^2 + \cdots + n^2 = \frac{1}{6}n(n+1)(n+\frac{1}{2})
\]

—MAN-KEUNG SIU
University of Hong Kong

92

MATHEMATICS MAGAZINE

Mathematical Association of America
is collaborating with JSTOR to digitize, preserve, and extend access to
Mathematics Magazine

www.jstor.org