It follows that

R2—x2 2Aay+a,+ - +a,)/n+(a}+a3+ - +a?2)/nx (26)
R+x R/x+1

where we have divided numerator and denominator by x. As x tends to infinity we note that
lim R/x =1 from the calculation

ol 5]

Hence from (25) and (26) we have
R2—x*> 2a +ay+ - +a,)/n+0

lim( R — x) =1lim =A(ay,a,,...,a,),

R+x 1+1 Yo
as was claimed in (16).
References
[1] Edwin Beckenbach and Richard Bellman, An Introduction to Inequalities, New Mathematical Library of the

MAA, vol. 3, 1961.

[2] G. H. Hardy, J. E. Littlewood, and G. Pélya, Inequalities, Cambridge University Press, 1959.
Ivan Niven, Maxima and Minima without Calculus, Dolciani Mathematical Expositions of the MAA, no. 6,
1981.

[4] D. O. Shklarsky, N. N. Chentzov, and I. M. Yaglom, The USSR Olympiad Problem Book, Irving Sussman,
ed., W. H. Freeman and Company, 1962.

The Fifteen Billiard Balls —
a Case Study in Combinatorial Problem Solving

SoLomon W. GoLomB
University of Southern California
Los Angeles, CA 90089

Balls bearing the numbers from 1 to 15 are on a billiard table. The object of the “game” is to
knock all fifteen off the table (into the pockets), where any one of the fifteen balls can be knocked
off first, but thereafter the next ball to go must be numbered consecutively to one which is already
pocketed. Thus if “3” is the first to go, the next one to be removed can be either “2” or “4”. If
“3” and “4” are off the table, the next one to go can be either “2” or “5”. If “3”, “4” “2” and
“1” are gone, the next one to go must be “5”, and thereafter “6”, then “7”, etc., up to “15”. (We
do not regard “1” and “15” as adjacent!) The question is: how many different sequences are
permitted for removing all fifteen balls from the table?

The permitted sequences are all permutations of the numbers from 1 to 15, so 15!=
1,307,674,368,000 is a trivial upper bound on the number of permitted sequences. To get a tighter
bound, we observe that while the first ball to go can be any of fifteen, each turn thereafter is a
choice of at most two; and the very last to go is the only one left, so it is a “choice” of 1. This
gives 15X 22 X 1=122,880 as a more realistic upper bound. But how to account for the
“sometimes 2, sometimes 1”” nature of those intermediate cases?
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The brute force solution

Suppose the first ball to go has the number k. If k=1 or k =15, there is only one way to
complete the sequence. If k=2, the remaining sequence will be “,3,4,5,6,...,14,15,” except that
ball number 1 can be inserted at any of the positions in the sequence indicated by a comma, from
before 3 to after 15, for a total of 14 different sequences. By symmetry, we have the same result if
the initial ball has the number k = 14.

For the general case, if k is the number of the first ball to go off the table, we have the higher
numbers, which must be removed in the relative order k+ 1,k + 2,...,14,15; and the lower
numbers, which must be removed in the relative order k — 1,k —2,...,2,1. The number of ways

of interspersing these two subsequences is then ( k141 ), since we must designate which k — 1 of

the fourteen remaining turns (after the first ball has been removed) will involve /ower numbered
balls, and that designation uniquely specifies the rest of that sequence, since there is a unique
relative order among the lower-numbered balls, and a unique relative order among the remaining,
higher-numbered balls. Hence the total number of permitted sequences is:

14
14 14 14\ . . (14)\_ 14) _ 14 _ 514 _
1+14+(2)+(3)+(4)+ +(14) ,go(j) (1+1)7 =27 = 16,384.

The simple form of the answer (it would have been 2"~ ! if we had started with » billiard balls)
suggests that there should be a much easier way of arriving at it.

The simple solution

In games (and puzzles) which consist of a finite number of moves, where each move involves a
“decision” constrained by the rules of the game, it is typically the case that the analysis of the
game is simplified by starting with the /ast move (the “winning”—or “losing”—move) and
working backward.

In our billiard game, the very last ball to go in must be either “1” or “15”, a binary “choice” (if
we are running the videotape of this game in reverse!). If the last ball is “1”, its predecessor must
have been either “2” or “15”, again a binary choice. (Similarly, if the last ball was “15”, its
predecessor was either “1” or “14”.) In fact, as we view the game in reverse, we see that at each
turn there is a binary choice: either the highest or the lowest numbered ball off the table will be
the “next” to reappear. And this proceeds all the way back to where we see only one ball (the first
ball) still on the table, which will be the unique “choice” for the “final” stage of our reverse
process. So the number of possible sequences is trivially 2'* (or 2"~!, if we had started with »
billiard balls).

A simple “forward” solution

Now that we know our problem not only has a simple answer, but a simple way of arriving at it
“in reverse”, we can look for a simple “forward” solution. There are 14 transitions from one ball
to the next as we remove all 15 balls from the table. If the transition is to a higher-numbered ball,
let us represent it by +; if to a lower-numbered ball, by —. There are 2'* sequences of +’s and
—’s of length 14, and we can show that they correspond precisely to the allowed sequences of
billiard balls. For suppose that there are m minuses, and therefore 14 — m plusses. Then the first
ball to go off the table had to bear the number k = m + 1, because the minuses in the sequence
correspond to transitions to balls numbered lower than k, and the plusses to balls numbered
higher than k. Moreover, starting at k, all the sequences of m =k —1 minuses and 14 —m
plusses precisely correspond to the distinct ways which are allowed to complete the sequence.

Note that this is really a restatement of the “brute force” (forward) solution, but with a
simplified way of counting to arrive at 2'4. Reading the 2'* sequences of +’s and —’s backward,
we have an obvious model for the “simple” (reverse) solution, where “+” means “remove a ball
at the high end” and “—" means “remove a ball at the low end”, in progressing from the fifteenth
turn back to the second turn.
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A more general problem

How many different ways (sequences), s(t), are there to remove the first t of the fifteen balls from
the billiard table, subject to our previous rules, for 1<t<157 We know that s(1)=15 and
s(15) =2 It turns out that

s(1)=(16—1)-2""1, for1<r<]15.

(If we had started with » balls on the table, and the same basic rules, we would have
s(1)=(n+1—1)-2"1 for 1 <t < n.) Proving this formula is one of the harder ways to solve the
original problem, but it is certainly doable.

Imagine a snake consisting of 15 segments numbered consecutively from head (#1) to tail
(#15), where the segment numbers correspond to the billiard ball numbers. For the sequences of
length ¢, we visualize the snake as having swallowed the last 1 — 1 segments from its tail end, so
that segments 1, 2, 3,..., ¢ — 1 now coincide with segments 15 — ¢+ 1,15 — ¢+ 2,15 — ¢+ 3,...,15,
respectively. (For ¢ > 7, the snake is looped through itself more than once!) From any of the 16 — ¢
“distinct” segments, we can exactly represent the billiard sequences of length ¢ by all possible
strings of t — 1 +’s and —’s, leading to (16 — ¢)-2'~! as the total number of such sequences.

For ¢t =1, we merely select one of the 15 distinct segments. For ¢ = 2, there is an identification
of segment 1 with segment 15. From any of the other 13 segments; + indicates that the second
term of the sequence is the next higher number, while — indicates that it is the next lower
number. From segment 1/15, + gives the sequence 1,2 while — gives the sequence 15,14. For
¢t = 3, there is an identification of segment 1 with segment 14, and of segment 2 with segment 15.
For any starting number from 3 to 13, inclusive, each of the patterns + +, + —, — +, — — yields
a different sequence of length three, in a normal way. TABLE 1 shows the unique interpretation of
these four patterns from the starting values 1/14 and 2/15. The situation for ¢ =3 is similarly
summarized in TABLE 2. The “snake” for this case is illustrated in FIGURE 1. More generally,
starting points for sequences are “distinct” if and only if they are distinct modulo 16 — ¢. The
reader is invited to fill in the remaining details.
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Pattern
+ + + — -+ - =
Start
1/14 1,2,3 14,15,13 14,13,15 14,13,12
2/15 2,3,4 2,3,1 2,1,3 15,14,13
TABLE 1
Pattern
+ ++ + 4 = + -+ +—=
Start
1/13 1,2,3,4 13,14,15,12 13,14,12,15 13,14,12,11
2/14 2,3,4,5 2,3,4,1 2,3,1,4 14,15,13,12
3/15 3,4,5,6 3,4,5,2 3,4,2,5 3,4,2,1
Pattern g 4 4 ___
Start
1/13 13,12,14,15 13,12,14,11 13,12,11,14 13,12,11,10
2/14 2,1,3,4 14,13,15,12 14,13,12,15 14,13,12,11
3/15 3,2,4,5 3,2,4,1 3,2,1,4 15,14,13,12
TABLE 2
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FIGURE 1

Some history

I first heard the original problem in 1952, when I was a graduate student at Harvard, by which
time it already seemed to have the status of a “folk theorem.” It was used in the 1965 Putnam
Competition [1], where the published solution uses mathematical induction (yet another approach!),
and the comment is made that “Several counting techniques were used by the contestants and
many were quite ingenious.” (From this it follows that “several > many.”) Equivalent formula-
tions of the problem also appear in books on combinatorial analysis by Liu [2] and by Tucker [3].
Tucker asks the reader to find a recursion relating the number of solutions for the case n+ 1 to
the number of solutions for the case n. The generalization presented above appears to be new, and
represents yet another way to solve the original problem.

This research was supported in part by the United States Navy, Office of Naval Research, under Contract
N00014-84-K-0189.
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Comments on the Cover lllustration:
Torus with Complete 7-Map

CHARLES GUNN
Tektronix
Beaverton, OR 97077

The cover illustration shows four views of a torus covered by a map of seven hexagonal regions,
every two of which are adjacent. Two complementary techniques were used to render these
images: ray-casting and parametric patches. The first used the representation of the torus as a
quartic surface T(x, y, z) = 0. At each point (x, y), or pixel, of the screen a line through the point
parallel to the z-axis is intersected with the surface. This yields a quartic equation in z, whose
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