
r ′
c, rc decreases on some interval [0, ε] and thus rc(ε) < r . On the other hand, under

the assumptions listed in (4), the condition 0 ≤ r ≤ D is sufficient but not necessary
for the conclusion that for some values of p ∈ (0, 1), rc > r . For example, for the
generalized FPP Problem with p = q = 1/2 and thus λ = 1/4, the right side of (3) is
4/(81)[7 + √

130] .= .909. Thus if (56/65) < r < 4/(81)[7 + √
130], then rc(1/4) >

r even though r > D.
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We give a short straightforward proof for a bound on the reminder term in the Taylor
theorem. The proof uses only induction and the fact that f ′ ≥ 0 implies the mono-
tonicity of f , so it might be an attractive proof to give to undergraduate students.

Let f be an n-times differentiable function in a neighborhood of a ∈ R. Recall that
the Taylor polynomial of order n of f at a is the polynomial

Pn(x) = f (a) + f ′(a)(x − a) + · · · + f (n)(a)

n! (x − a)n .

It will be convenient to define P−1(x) = 0. Let Rn = f − Pn be the remainder term.
Then

Theorem 1 (Lagrange’s formula for the remainder). If f has an (n + 1)th
derivative on [a, b], then there exists ξ ∈ [a, b] such that

Rn(b) = f (n+1)(ξ)

(n + 1)! (b − a)n+1.

This formula is the main tool for bounding the remainder of the Taylor expansion in
calculus classes, especially when this subject is taught before integration. One would
like to have some “natural” proof for it. In [3] it is suggested that induction seems
suitable, since P ′

n is the Taylor polynomial of f ′ of order n − 1, so R′
n(x) is given

by induction. This approach fails, since one cannot integrate R′
n(x) because the point

ξ = ξ(x) depends on x .
While we were teaching a first calculus course for chemistry and physics majors at

Tel-Aviv University, we observed that this obstacle can be removed if we change the
problem to finding a bound on the remainder. This is just as useful, since a bound is
all that is needed to show that the Taylor series converges to the function. From our
personal experience, we believe that this approach enables students to grasp the mate-
rial more easily. Furthermore, Lagrange’s formula can be deduced from the bound, as
we show at the end of this note.
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The only fact needed in the proof is that a function with a positive derivative is
increasing. This can be proved easily with the mean value theorem or without it (see
[1, 2]). As a direct corollary one gets:

Lemma 2. Let f, g be differentiable in a closed segment [a, b]. If f (a) = g(a) and
f ′(x) ≤ g′(x) for every x ∈ (a, b), then f (x) ≤ g(x) for every a ≤ x ≤ b.

Theorem 3. Suppose that f has an (n + 1)th derivative on [a, b] and that m ≤
f (n+1)(x) ≤ M for every x ∈ [a, b]. Then for all x ∈ [a, b],

m

(n + 1)! (x − a)n+1 ≤ Rn(x) ≤ M

(n + 1)! (x − a)n+1. (1)

Proof. By induction. For n = −1 the result is trivial.
Let N ≥ 0. Suppose that the theorem holds for all functions f and for n = N − 1.

Fix a function f for which m ≤ f (N+1)(x) ≤ M for x ∈ [a, b]. Write f (x) = PN (x) +
RN (x). Then f ′(x) = P ′

N (x) + R′
N (x). Note that P ′

N is the Taylor polynomial of f ′
of order N − 1, and so R′

N is the corresponding remainder term. By our induction
hypothesis (applied to the function f ′ with n = N − 1),

m

N ! (x − a)N ≤ R′
N (x) ≤ M

N ! (x − a)N , (2)

for a ≤ x ≤ b. Hence Lemma 2 gives the required inequality.

We conclude with a proof of Lagrange’s classical formula. This might be omitted
in calculus classes.

Proof. Choose m = infa≤x≤b{ f (n+1)(x)} and M = supa≤x≤b{ f (n+1)(x)} (if f (n+1) is
unbounded, we allow m, M = ±∞). Thus by Theorem 3, Rn(b) = k

(n+1)! (b − a)n+1,
where m ≤ k ≤ M . If m < k < M , then the assertion follows directly from Darboux’s
Intermediate Value Theorem. Otherwise, it follows from the following lemma.

Lemma 4. In Theorem 3 either of the equalities holds (for b) if and only if f (n+1) is
constant.

Proof. It is clear that if f (n+1) is constant, then both equalities hold.
In the converse direction, assume for example that Rn(b) = M

(n+1)!(b − a)n+1. Let

Qn(x) = M
(n+1)! (x − a)n+1. Then Rn(a) = Qn(a) = 0 and Rn(b) = Qn(b). Since R′

n is
the (n − 1)-th remainder of f ′, by Theorem 3

R′
n(x) ≤ M

n! (x − a)n = Q′
n(x).

Hence h = Qn − Rn is non-decreasing. Since h(a) = h(b) = 0, we get h(x) = 0, for
all x . This implies that Rn(x) = Qn(x), so f = Pn + Rn is a polynomial of degree at
most n + 1.
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