Introduction In a recent article MacKinnon [1] describes four methods that may be used to find square roots of 2×2 matrices. The first of these methods requires that the matrix for which the square roots are sought be diagonalizable and, subsequently, this method was used by Scott [2] to determine all the square roots of 2×2 matrices. A surprising conclusion is that scalar 2×2 matrices possess double-infinities of square roots whereas nonscalar 2×2 matrices have only a finite number of square roots.

The purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine explicit formulae for all the square roots of 2×2 matrices. These formulae indicate exactly when a 2×2 matrix has square roots, and the number of such roots.

By definition, the square roots of a 2×2 matrix, A, are those 2×2 matrices, X, for which

$$X^2 = A. \quad (1)$$

However, for each square matrix X, the Cayley-Hamilton theorem states that

$$X^2 - (\text{tr } X)X + (\det X)I = 0. \quad (2)$$

Thus, if a 2×2 matrix A has a square root X, then we may use (2) to eliminate X^2 from (1) to obtain

$$(\text{tr } X)X = A + (\det X)I.$$

Further, since $(\det X)^2 = \det X^2 = \det A$, then $\det X = \varepsilon_1 \sqrt{\det A}$, that is $\det \sqrt{A} = \varepsilon_1 \sqrt{\det A}$, so that the above result simplifies to the identity:

$$(\text{tr } X)X = A + \varepsilon_1 \sqrt{\det A} I, \quad \varepsilon_1 = \pm 1. \quad (3)$$

Case 1: A is a scalar matrix. If A is a scalar matrix, $A = aI$, then (3) gives

$$(\text{tr } X)X = (1 + \varepsilon_1)aI, \quad \varepsilon_1 = \pm 1.$$

Hence, either $(\text{tr } X)X = 0$ or $(\text{tr } X)X = 2aI$. The first of these possibilities determines the general solution of (1) as

$$X = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}, \quad \alpha^2 + \beta \gamma = a \quad (4a)$$

and it covers the second possibility if $a = 0$. On the other hand, if $a \neq 0$ then the second possibility, $(\text{tr } X)X = 2aI$, implies X is scalar and has only the pair of solutions

$$X = \pm \sqrt{a} I. \quad (4b)$$

For this case we conclude that if A is a zero matrix then it has a double infinity of square roots as given by (4a) with $a = 0$, whereas if A is a nonzero, scalar matrix then
it has a double-infinity of square roots plus two scalar square roots as given by (4a) and (4b).

Case 2: A is not a scalar matrix. If A is not a scalar matrix then \(\text{tr} \, X \neq 0 \) in (3). Consequently, every square root \(X \) has the form:

\[
X = \tau^{-1} \left(A + \varepsilon_1 \sqrt{\det A} I \right), \quad \tau \neq 0
\]

Substituting this expression for \(X \) into (1) and using the Cayley-Hamilton theorem for \(A \) we find

\[
A^2 + (2\varepsilon_1 \sqrt{\det A} - \tau^2)A + (\text{det} \, A) I = 0
\]

\[
((\text{tr} \, A) A - (\text{det} \, A) I) + (2\varepsilon_1 \sqrt{\det A} - \tau^2)A + (\text{det} \, A) I = 0
\]

\[
(\text{tr} \, A + 2\varepsilon_1 \sqrt{\det A} - \tau^2)A = 0.
\]

Since \(A \) is not a scalar matrix then \(A \) is not a zero matrix, so

\[
\tau^2 = \text{tr} \, A + 2\varepsilon_1 \sqrt{\det A}, \quad (\tau \neq 0, \varepsilon_1 = \pm 1).
\]

(5)

If \((\text{tr} \, A)^2 \neq 4 \text{det} \, A\) then both values of \(\varepsilon_1 \) may be used in (5) without reducing \(\tau \) to zero. Consequently, it follows from (3) that we may write \(X \), the square root of \(A \), as

\[
X = \varepsilon_2 \frac{A + \varepsilon_1 \sqrt{\det A} I}{\sqrt{\text{tr} \, A + 2\varepsilon_1 \sqrt{\det A}}}.
\]

(6a)

Here each \(\varepsilon_i = \pm 1 \), and if \(\text{det} \, A \neq 0 \) the result determines exactly four square roots for \(A \). However, if \(\text{det} \, A = 0 \) then result (6a) determines two square roots for \(A \) as given by

\[
X = \pm \frac{1}{\sqrt{\text{tr} \, A}} A.
\]

(6b)

Alternatively, if \((\text{tr} \, A)^2 = 4 \text{det} \, A \neq 0\), then one value of \(\varepsilon_1 \) in (5) reduces \(\tau \) to zero whereas the other value yields the results: \(2\varepsilon_1 \sqrt{\det A} = \text{tr} \, A \) and \(\tau^2 = 2 \text{tr} \, A \). In this case, \(A \) has exactly two square roots given by

\[
X = \pm \frac{1}{\sqrt{2 \text{tr} \, A}} \left(A + \frac{1}{2} (\text{tr} \, A) I \right).
\]

(6c)

Finally, if \((\text{tr} \, A)^2 = 4 \text{det} \, A = 0\) then both values of \(\varepsilon_1 \) reduce \(\tau \) to zero in (5). Hence it follows by contradiction that \(A \) has no square roots.

For this case we conclude that a nonscalar matrix, \(A \), has square roots if, and only if, at least one of the numbers, \(\text{tr} \, A \) and \(\text{det} \, A \), is nonzero. Then the matrix has four square roots given by (6a) if

\[
(\text{tr} \, A)^2 \neq 4 \text{det} \, A, \text{det} \, A \neq 0
\]

and two square roots given by (6b) or (6c) if

\[
(\text{tr} \, A)^2 \neq 4 \text{det} \, A, \text{det} \, A = 0 \quad \text{or} \quad (\text{tr} \, A)^2 = 4 \text{det} \, A, \text{det} \, A \neq 0.
\]

It is worth noting from (6a) that

\[
\text{tr} \, X = \text{tr} \, \sqrt{A} = \varepsilon_2 \sqrt{\text{tr} \, A + 2\varepsilon_1 \sqrt{\det A}}.
\]
Hence using the identity, \(\det \sqrt{A} = e_1 \sqrt{\det A} \) as applied in (3), result (6a) may be rewritten as

\[
\sqrt{A} = \frac{1}{\text{tr}\sqrt{A}} (A + \det \sqrt{A} I),
\]

which is equivalent to the Cayley-Hamilton theorem for the matrix \(\sqrt{A} \). This same deduction can be made, of course, for all other cases under which \(\sqrt{A} \) exists.

REFERENCES

Proof without Words:
Every Cube Is the Sum of Consecutive Odd Numbers

\[
1^3 = 1 \\
2^3 = 3 + 5 \\
3^3 = 7 + 9 + 11 \\
4^3 = 13 + 15 + 17 + 19 \\
\vdots \\
n^3 = [n(n - 1) + 1] + \cdots + [n(n + 1) - 1]
\]

—Roger B. Nelsen
Lewis and Clark College
Portland, OR 97219