Example 5. Let

—k
f(x)= { xl » 0<xx 1’} for x € (0, c0) and arbitrary positive integer k.
x~Vk, x=1,

For further reading on related material, see S. Avital and S. Libeskind, “An
Algebraic and Geometric Approach to Two Step Iterations of Bilinear Functions,”
Amer. Math. Monthly 91 (January 1984) 53-56; P. E. Conner and E. E. Floyd,
Differential Periodic Maps, Springer-Verlag, New York, 1964; R. G. Kuller “On the
Differential Equation f’=fo g, where go g=1," Math. Mag. 42 (1969) 195-200;
N. McShane, “On the Periodicity of Homeomorphism on Real Line,” Amer. Math.
Monthly 68 (1961); O. Shisha and C. B. Mehr, “On Involutions,” Journal of
National Bureau of Standards 71B (1967) 19-20.
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Involutions and Problems Involving Perimeter and Area
Joseph Wiener, Henjin Chi, and Hushang Poorkarimi, Pan American University
Edinburg, TX

William Parsons [CMJ 15 (November 1984) 429] asked which integer-sided right
triangles have perimeter and area equal. Here we illustrate how properties of
involutions can be used to answer this and similar questions.

First, consider a triangle with legs x and y. Setting its perimeter and area equal is
equivalent to requiring that

4x—8
x—4
For a rectangle of dimensions x and y, the equality of its perimeter and area is
equivalent to

y= (x+4). (1)

2x
y=—"5 (x#2). (2)
x—2
The bilinear functions (1), (2) are, respectively, special cases of (2), (4) in the above
capsule. Thus, f(x)=(4x —8)/(x —4) and g(x)=2(x)/(x — 2) are involutions.
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As noted in the previous classroom capsule, the graph of every involution F(x) is
symmetric with respect to the line y = x. Furthermore, every involution is 1-1 since
F(x,) = F(x,) implies that x;, = F{ F(x,)} = F{ F(x,)} = x,. It is also easily verified
(with the exception of F(x) = x) that F(x) = (ax + b)/(cx — a) is decreasing if and
only if a?+ bc > 0.

As Figure 1 illustrates, we need only consider (1) for 4 < x < 12. From

4x —8 8

y= =4+ —,

x—4 x—4
we note that x — 4 divides 8. Thus, checking x —4 =2* (k=0,1,2,3), we obtain
integer solutions (5,12) and (6, 8). By symmetry of the involution’s graph about the
line y = x, we also have solutions (12,5) and (8, 6). Thus, (5,12) and (6,8) are the
two solutions that describe all integer-sided right triangles having perimeter and
area equal. In similar fashion, Figure 2 shows that it suffices to consider 2 < x < 6.
Since

2x 5 4
= =2+
‘e x—2 x—2

requires that x — 2 divide 4, we readily obtain solutions (3,6) and (4,4), and (by
symmetry) the solution (6, 3). Thus, there exist precisely two integer-sided rectangles

that have perimeter and area equal.
In the above mentioned capsule, Parsons also formulated the following conjec-
ture (a proof of which he cited in School Science and Mathematics 76 (1976) 83-84):

For every natural number n, there is at least one primitive Pythagorean
triangle whose area equals n times its perimeter.

This is equivalent to the existence of at least one solution to

n(x 4y ey =2 (3)

where the integers x and y are relatively prime. From (3) we obtain the involution

4nx — 8n? 8n?
4)

‘e x—4n dnt x—4n’
The graph of (4) shows that we need only consider 4n < x < 8n* + 4n. Since x — 4n
must divide 8n°%, we need to consider all possibilities x —4n=2%n/ (k=0,1,2,3
and j=0,1,2). Of course, it is a simple matter to write a computer program which,
for each given natural number n, will output all integral solutions (x, y) of (4). But
do we know if solutions actually exist for each n? The answer is yes.

Theorem. For each natural number n, there exists a primitive Pythagorean triangle
with legs

x=4n+1 and y=8n*+4n (5)

in which the area equals n times the perimeter. If n > 3 is odd, there exists at least one
other such primitive Pythagorean triangle with legs

x=n*+4n and y=4n+38. (6)

Proof. First note that
(4n+1)"+ (8n2+4n) = (8n2+ 4n+1)°
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and
(n®+4n)* + (4n +8)* = (n*+ 4n +8)%,

so that x, y and yx? + y? form a right triangle for each natural number n. To prove
that x, y in (5) are relatively prime, assume that they have a common factor p. Then

dn+1=ip and 8n’+4n=jp

for integers i, j. Multiplying the first equation by 2n and subtracting from the
second, we have 2n =mp (m, integral). From this and the first equation, we get
kp =1 (k, integral) and hence p = 1. Finally, we verify that x, y in (6) are relatively
prime when 7 is odd. Assume that

n*+4n=ip and 4n+8=jp

for integers i, j. Since n? + 4n is odd, p must be odd and j must be a multiple of 4.
Hence, n + 2 = mp (integral m). Subtracting n*+ 2n = mnp from n?+ 4n=ip, we
get 2n=kp (integral k). Since p must divide n, assume that n=pgq for some
integer ¢. Then, subtracting n = pg from n + 2 = mp, we obtain 2 = sp (integral s).
Hence, p = 1. This completes the proof of our theorem.

o

More on the Series for In2
Leonard Gillman, The University of Texas at Austin, Austin, TX

Norman Schaumberger [CMJ 18 (May 1987) 223-225] derived the series

In2=1 . (1)
=] -4+ ———+ ...
! 273 4
directly from the inequality
1\% 1\1+k
(1+—) <e<(1+—) (2)
k k

and extended the method to obtain series for In n for all n.

Here is a variant procedure. In place of (2), our point of departure is the
existence of Euler’s constant. For completeness, we first give a simple geometric
derivation of this constant; the only sophisticated step is that a bounded monotone
sequence converges.

We define
1 1
H=1+—-+" " +— (3)
2 n
and
y,=H,—Ilnn. (4)
It is also convenient to put
Yr:=Hn—1_1nn. (5)
Thus,
1
Va=Yat (6)
n
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