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Many classical inequalities are just statements about the convexity or concavity of
certain (hidden) underlying functions. This is nicely illustrated by Hardy, Littlewood,
and Pólya [5] whose Chapter III deals with “Mean values with an arbitrary function
and the theory of convex functions,” and by Steele [12] whose Chapter 6 is called
“Convexity—The third pillar.” Yet another illustration is the following proof of the
arithmetic-mean-geometric-mean inequality (which goes back to Pólya). The inequal-
ity states that the arithmetic mean of n positive real numbers a1, . . . , an is always
greater or equal to their geometric mean:
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The substitution xi = ln ai shows that (1) is equivalent to the inequality
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exi ≥ e
1
n
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i=1 xi . (2)

The correctness of (2) is easily seen from the following two observations. First: f (x) =
ex is a convex function. And second: Jensen’s inequality [7] states that any convex
function f : R → R and any real numbers x1, . . . , xn satisfy
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·
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f (xi ) ≥ f
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1

n
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)
. (3)

But we do not want to give the impression that this article is centered around convexity
and that it perhaps deals with Jensen’s inequality. No, no, no, quite to the contrary:
This article is centered around concavity, and it deals with the Cauchy inequality, the
Hölder inequality, the Minkowski inequality, and with Milne’s inequality. We present
simple, concise, and uniform proofs for these four classical inequalities. All our proofs
proceed in exactly the same fashion, by exactly the same type of argument, and they
all follow from the concavity of a certain underlying function in exactly the same way.
Loosely speaking, we shall see that

Cauchy corresponds to the concave function
√

x ,
Hölder corresponds to the concave function x1/p with p > 1,
Minkowksi to the concave function (x1/p + 1)p with p > 1, and
Milne corresponds to the concave function x/(1 + x).

Interestingly, the cases of equality for all four inequalities fall out from our discussion
in a very natural way and come almost for free. Now let us set the stage for concavity
and explain the general approach.
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Concavity and the master theorem

Here are some very basic definitions. Throughout we use R and R+ to denote the set of
real numbers and the set of positive real numbers, respectively. A function g : R+ → R

is concave if it satisfies

λ · g(x) + (1 − λ) · g(y) ≤ g(λx + (1 − λ)y) (4)

for all x, y ∈ R+ and for all real λ with 0 < λ < 1. In other words, for any x and y the
line segment connecting point (x, g(x)) to the point (y, g(y)) must lie below the graph
of function g; FIGURE 1 illustrates this. A concave function g is strictly concave, if
equality in (4) is equivalent to x = y. A function g is convex (strictly convex) if the
function −g is concave (strictly concave). For twice-differentiable functions g there
are simple criteria for checking these properties: A twice-differentiable function g is
concave (strictly concave, convex, strictly convex) if and only if its second derivative
is nonpositive (negative, nonnegative, positive) everywhere.

x y

Figure 1 A concave function

Most of our arguments are based on the following theorem which we dub the master
theorem (although admittedly, it rather is a simple observation on concavity, whose
proof is only slightly longer than its statement). We would guess that the statement
was known already before the Second World War, but its exact origin is unknown to
us. Walther Janous pointed out to us that Godunova [4] used the idea in 1967.

MASTER THEOREM. Let g : R+ → R be a strictly concave function, and let f :
R

2
+ → R be the function defined by

f (x, y) = y · g

(
x

y

)
. (5)

Then all positive real numbers x1, . . . , xn and y1, . . . , yn satisfy the inequality

n∑
i=1

f (xi , yi ) ≤ f

(
n∑

i=1

xi ,

n∑
i=1

yi

)
. (6)

Equality holds in (6) if and only if the two sequences xi and yi are proportional (that
is, if and only if there is a real number t such that xi/yi = t for all i).

Proof. The proof is by induction on n. For n = 1, the inequality (6) becomes an
equation. Since the two sequences have length one, they are trivially proportional. For
n = 2, we use the concavity of g: From (4) with λ = y1/(y1 + y2), we derive that
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f (x1, y1) + f (x2, y2) = y1 · g

(
x1

y1

)
+ y2 · g

(
x2

y2

)

= (y1 + y2)

{
y1

y1 + y2
· g

(
x1

y1

)
+ y2

y1 + y2
· g

(
x2

y2

)}

≤ (y1 + y2) · g

(
x1 + x2

y1 + y2

)
= f (x1 + x2, y1 + y2). (7)

Since g is strictly concave, equality holds in this chain if and only if x1/y1 = x2/y2.
The inductive step for n ≥ 3 follows easily from (7), and the proof is complete.

Here are two brief remarks before we proceed. First, if the function g in the theorem
is just concave (but not strictly concave), then inequality (6) is still valid, but we lose
control over the situation where equality holds. The cases of equality are no longer
limited to proportional sequences, and can be quite arbitrary. Second, if g is strictly
convex (instead of strictly concave), then the inequality (6) follows with a greater-or-
equal sign instead of a less-or-equal sign.

Our next goal is to derive four well-known inequalities by four applications of
the master theorem with four appropriately chosen strictly concave functions. As a
propaedeutic exercise the reader should recall that the functions

√
x and x/(1 + x)

are strictly concave. Furthermore, for any fixed real p > 1 the functions x1/p and
(x1/p + 1)p are strictly concave. Throughout a1, . . . , an and b1, . . . , bn will denote
sequences of positive real numbers.

Cauchy Augustin-Louis Cauchy [3] published his famous inequality in 1821. Then
in 1859, Viktor Yakovlevich Bunyakovsky [2] derived a corresponding inequality
for integrals, and in 1885 Hermann Schwarz [11] proved a corresponding version
for inner-product spaces. Therefore the Cauchy inequality sometimes also shows
up under the name Schwarz inequality, or Cauchy-Schwarz inequality, or Cauchy-
Bunyakovsky-Schwarz inequality. In any case, its discrete version states that

n∑
i=1

ai bi ≤
√

n∑
i=1

a2
i ·

√
n∑

i=1

b2
i . (8)

Cauchy’s original proof of (8) rewrites it into the equivalent and obviously true

0 ≤
∑

1≤i< j≤n

(ai b j − a j bi )
2.

We give another very short proof of (8) by deducing it from the master theorem: We
use the strictly concave function g(x) = √

x , which yields f (x, y) = √
x
√

y. Then
(6) turns into

n∑
i=1

√
xi

√
yi ≤

√
n∑

i=1

xi ·
√

n∑
i=1

yi .

Finally, setting xi = a2
i and yi = b2

i for 1 ≤ i ≤ n yields the Cauchy inequality (8).
Furthermore equality holds in (8) if and only if the ai and the bi are proportional.

Hölder We turn to the Hölder inequality, which was first derived in 1888 by Leonard
James Rogers [10], and then in 1889 in a different way by Otto Ludwig Hölder [6].
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This inequality is built around two real numbers p, q > 1 with 1/p + 1/q = 1. It
states that

n∑
i=1

ai bi ≤
(

n∑
i=1

ai
p

)1/p (
n∑

i=1

bi
q

)1/q

. (9)

Note that the Cauchy inequality is the special case of the Hölder inequality with p =
q = 2. One standard proof of (9) is based on Young’s inequality, which gives xy ≤
x p/p + yq/q for all real x, y > 0 and for all real p, q > 1 with 1/p + 1/q = 1.

But let us deduce the Hölder inequality from the master theorem. We set g(x) =
x1/p, which is strictly concave if p > 1. Then the corresponding function f is given
by f (x, y) = x1/p y1/q , and inequality (6) becomes

n∑
i=1

xi
1/p yi

1/q ≤
(

n∑
i=1

xi

)1/p (
n∑

i=1

yi

)1/q

.

We substitute xi = ai
p and yi = bi

q for 1 ≤ i ≤ n, and get the Hölder inequality (9).
Clearly, equality holds in (9) if and only if the ai

p and the bi
q are proportional.

Minkowski The Minkowski inequality was established in 1896 by Hermann Min-
kowski [9] in his book Geometrie der Zahlen (Geometry of Numbers). It uses a real
parameter p > 1, and states that(

n∑
i=1

(ai + bi )
p

)1/p

≤
(

n∑
i=1

ai
p

)1/p

+
(

n∑
i=1

bi
p

)1/p

. (10)

The special case of (10) with p = 2 is the triangle inequality ‖a + b‖2 ≤ ‖a‖2 + ‖b‖2

in Euclidean spaces. Once again we exhibit a very short proof via the master theorem.
We choose g(x) = (x1/p + 1)p. Since p > 1, this function g is strictly concave. The
corresponding function f is given by f (x, y) = (x1/p + y1/p)p. Then the inequality
in (6) becomes

n∑
i=1

(xi
1/p + yi

1/p)p ≤
⎛
⎝

(
n∑

i=1

xi

)1/p

+
(

n∑
i=1

yi

)1/p
⎞
⎠

p

.

By setting xi = a p
i and yi = bp

i for 1 ≤ i ≤ n and by taking the pth root on both sides,
we produce the Minkowski inequality (10). Furthermore equality holds in (10), if and
only if the a p

i and the bp
i are proportional, which happens if and only if the ai and the

bi are proportional.

Milne In 1925 Milne [8] used the following inequality (11) to analyze the biases
inherent in certain measurements of stellar radiation:(

n∑
i=1

(ai + bi )

)(
n∑

i=1

ai bi

ai + bi

)
≤

(
n∑

i=1

ai

) (
n∑

i=1

bi

)
. (11)

Milne’s inequality is fairly well known, but of course the inequalities of Cauchy,
Hölder, and Minkowski are in a completely different league—both in terms of rele-
vance and in terms of publicity. Milne’s inequality is also discussed on page 61 of
Hardy, Littlewood, and Pólya [5]. The problem corner in Crux Mathematicorum [1]
lists three simple proofs that are due to Ardila, to Lau, and to Murty, respectively.
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Murty’s proof is particularly simple and rewrites (11) into the equivalent

0 ≤
∑

1≤i< j≤n

(ai b j − a j bi )
2

(ai + bi )(a j + b j )
.

And here is our proof: This time we use the strictly concave function g(x) =
x/(1 + x), which yields f (x, y) = xy/(x + y). The resulting version of (6) yields

n∑
i=1

ai bi

ai + bi
≤

(
n∑

i=1

ai

) (
n∑

i=1

bi

) / (
n∑

i=1

ai +
n∑

i=1

bi

)
,

which is equivalent to (11). Once again equality holds if and only if the ai and the bi

are proportional.

A generalization of the master theorem

We now generalize the master theorem to higher dimensions. This is a fairly easy
enterprise, since all concepts and arguments for the higher-dimensional case run per-
fectly in parallel to the one-dimensional case. For instance, a function g : R

d
+ → R is

concave if it satisfies

λ · g(�x) + (1 − λ) · g(�y) ≤ g (λ�x + (1 − λ)�y) (12)

for all �x, �y ∈ R
d
+ and for all real numbers λ with 0 < λ < 1. A concave function g is

strictly concave, if equality in (12) is equivalent to �x = �y. It is known that a twice-
differentiable function g is concave (strictly concave) if and only if its Hessian matrix
is negative semidefinite (negative definite) for all �x ∈ R

d
+.

Here is the higher-dimensional version of the master theorem. Note that by setting
d = 2 in the new theorem we recover the master theorem.

HIGHER-DIMENSIONAL MASTER THEOREM. Let d ≥ 2 be an integer, and let g :
R

d−1
+ → R be a strictly concave function. Let f : R

d
+ → R be the function defined by

f (x1, x2, . . . , xd) = xd · g

(
x1

xd
,

x2

xd
, . . . ,

xd−1

xd

)
. (13)

Then any n × d matrix Z = (zi, j ) with positive real entries satisfies the inequality

n∑
i=1

f (zi,1, zi,2, . . . , zi,d) ≤ f

(
n∑

i=1

zi,1,

n∑
i=1

zi,2, . . . ,

n∑
i=1

zi,d

)
. (14)

Equality holds in (14) if and only if matrix Z has rank 1 (that is, if and only if there
exist real numbers s1, . . . , sn and t1, . . . , td such that zi, j = si t j for all i, j).

Proof. The proof closely follows the proof of the master theorem. As in (7), we
observe that all positive real numbers a1, . . . , ad and b1, . . . , bd satisfy

f (a1, . . . , ad) + f (b1, . . . , bd) ≤ f (a1 + b1, a2 + b2, . . . , ad + bd) .

Equality holds if and only if the ai and the bi are proportional. Then an inductive
argument based on this observation yields the statement in the theorem, and completes
the proof.
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We conclude this article by posing two exercises to the reader that both can be
settled through the higher-dimensional master theorem. Each exercise deals with in-
equalities for three sequences a1, . . . , an , b1, . . . , bn , and c1, . . . , cn of positive real
numbers.

Generalized Hölder The first exercise concerns the generalized Hölder inequality,
which is built around three real numbers p, q, r > 1 with 1/p + 1/q + 1/r = 1. It
states that

n∑
i=1

ai bi ci ≤
(

n∑
i=1

ai
p

)1/p (
n∑

i=1

bi
q

)1/q (
n∑

i=1

ci
r

)1/r

. (15)

The reader is asked to deduce inequality (15) from the higher-dimensional master the-
orem (perhaps by using the function g(x, y) = x1/p y1/q), and to identify the cases of
equality.

Generalized Milne Problem #68 on page 62 of Hardy, Littlewood, and Pólya [5]
concerns the following generalization of Milne’s inequality (11) to three sequences.(

n∑
i=1

ai

)(
n∑

i=1

bi

) (
n∑

i=1

ci

)

≥
(

n∑
i=1

(ai + bi + ci )

) (
n∑

i=1

ai bi + bi ci + ai ci

ai + bi + ci

)(
n∑

i=1

ai bi ci

ai bi + bi ci + ai ci

)

We ask the reader to deduce it from the higher-dimensional master theorem, and to de-
scribe the cases of equality. One possible proof goes through two steps, where the first
step uses g(x, y) = xy/(xy + x + y), and the second step uses the function g(x, y) =
(xy + x + y)/(x + y + 1).
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