Odd-like (Even-like) Functions on \((a, b)\)

Zhibo Chen (zxc4@psu.edu), Peter Hammond (pjh171@psu.edu), and Lisa Hazinski (leh140@psu.edu), Penn State University, McKeesport Campus, McKeesport, PA 15132

The integral \(\int_0^{\pi/2} \cos(\pi \sin^2 \theta) \, d\theta\), which appeared in the famous Ramanujan’s Notebooks [1, p. 56], appears difficult to evaluate and, therefore, served to motivate this note.

For a continuous function \(f(x)\) on \([-a, a]\), calculus students know that
\[
\int_{-a}^{a} f(x) \, dx = 0
\]
when \(f(x)\) is an odd function (i.e., \(f(-x) = -f(x)\) for all \(x\)). Therefore, it would be useful for students to know when a function on \((a, b)\) can be translated to describe an odd function on a corresponding interval \((-c, c)\).

Suppose \(f(x)\) is defined on the interval \((a, b)\). Then (see Figure 1), \(f(a + b - x) = -f(x)\) for all \(x\) in \((a, b)\) is equivalent to \(g(x) = f(x + \frac{a+b}{2})\) being an odd function on the interval \((-\frac{b-a}{2}, \frac{b-a}{2})\), since
\[
g(-x) = f\left(-x + \frac{a+b}{2}\right) = f\left[a + b - \left(x + \frac{a+b}{2}\right)\right]
= -f\left(x + \frac{a+b}{2}\right) = -g(x)
\]
for all \(x \in (-\frac{b-a}{2}, \frac{b-a}{2})\).

![Figure 1](image)

Definition. A function \(f(x)\) is odd-like on the interval \((a, b)\) if \(f(a + b - x) = -f(x)\) for all \(x\) in \((a, b)\). (Thus, \(f(x)\) is odd if and only if it is odd-like on \((-a, a)\) for all \(a > 0\). And \(f(x)\) is odd on \((-a, a)\) if and only if it is odd-like on \((-a, a)\).)
If \(f(x) \) is an integrable, odd-like function on \((a, b)\), then the translated function
\(g(x) = f(x + \frac{a+b}{2}) \) is an odd function on \((-\frac{b-a}{2}, \frac{b-a}{2})\) and so
\[
\int_{a}^{b} f(x) \, dx = \int_{\frac{a+b}{2}}^{b} g(x) \, dx = 0.
\]
This also can be verified directly by letting \(x = a + b - u \) and observing that
\[
\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(a + b - u) \, du = \int_{b}^{a} -f(u) \, du = -\int_{a}^{b} f(x) \, dx.
\]

Examples. Each function below is odd-like on the indicated interval.

(i) \(\cos nx \) on \((0, \pi)\) with \(n \) odd, and \(\sin nx \) on \((0, \pi)\) with \(n \) even.
(ii) \(\frac{\sin(mx)}{\sin(nx)} \) on \((0, \pi)\) for positive integers \(m \) and \(n \), when \(m + n \) is odd.
(iii) \(\cos(n\pi \sin^2 x) \) and \(\cos(n\pi \cos^2 x) \) on \((0, \pi/2)\) when \(n \) is odd.
(iv) \(\sin(n\pi \sin^2 x) \) and \(\sin(n\pi \cos^2 x) \) on \((0, \pi/2)\) when \(n \) is even.

The odd-like property for (i) and (ii) can be verified directly. For \(\cos(n\pi \sin^2 x) \) in (iii), observe that
\[
\cos(n\pi \sin^2 \left(\frac{\pi}{2} - x\right)) = \cos(n\pi \cos^2 x) = \cos(n\pi (1 - \sin^2 x)) = \cos(n\pi - n\pi \sin^2 x) = -\cos(n\pi \sin^2 x).
\]
Verification of the remaining functions follows similarly. Each of the above functions has \(\int_{a}^{b} f(x) \, dx = 0 \) on the indicated interval \((a, b)\). Thus,
\[
\int_{0}^{\pi/2} \cos(\pi \sin^2 \theta) \, d\theta = 0
\]
is the value of the integral that motivated this note.

For any given function \(f(x) \) on \((a, b)\), we can construct an odd-like function on \((a, b)\). Figure 2 illustrates why \(F(x) = f(a + b - x) - f(x) \) is an odd-like function on \((a, b)\).
Example. The function $\ln\left(\frac{\pi-x}{x}\right) = \ln(\pi - x) - \ln x$ is odd-like on $(\frac{\pi}{4}, \frac{3\pi}{4})$ since $\ln\left(\frac{\pi-(\pi-x)}{x}\right) = -\ln\left(\frac{\pi-x}{x}\right)$. Thus, $\int_{\frac{3\pi}{4}}^{\pi/4} \ln\left(\frac{\pi-x}{x}\right) dx = 0$.

Proposition. If $f(x)$ is an integrable function and $f(x) \neq -f(a + b - x)$ for any x in (a, b), then

$$\int_{a}^{b} \frac{f(x)}{f(x) + f(a + b - x)} dx = \int_{a}^{b} \frac{f(a + b - x)}{f(x) + f(a + b - x)} dx = \frac{b - a}{2}.$$

Proof. The function $\frac{f(x) - f(a + b - x)}{f(x) + f(a + b - x)}$ is an odd-like function on (a, b), and so the first equality holds. (This also follows from the substitution $x = a + b - u$.) And since $\frac{f(x)}{f(x) + f(a + b - x)} = 1 - \frac{f(a + b - x)}{f(x) + f(a + b - x)}$, it follows that $2 \int_{a}^{b} \frac{f(x)}{f(x) + f(a + b - x)} dx = b - a$.

Examples.

(i) $\int_{\pi/2}^{3\pi/2} \frac{\ln x}{\ln x + \ln(4\pi - x)} dx = \pi$.

(ii) $\int_{\pi/2}^{3\pi/2} \frac{\sin^r x}{\sin^r x + \cos^r x} dx = \frac{\pi}{12}$ for any real number r.

(iii) $\int_{\pi/2}^{3\pi/2} \frac{x^r}{x^r + (\pi - x)^r} dx = \frac{\pi}{6}$ for any real number r.

The counterpart of odd-like functions are even-like functions defined as follows.

Definition. A function $f(x)$ is even-like on the interval (a, b) if $f(a + b - x) = f(x)$ for all x in (a, b). (Thus, a function $f(x)$ is even if and only if it is even-like on $(-a, a)$ for all $a > 0$. And $f(x)$ is even on $(-a, a)$ if and only if it is even-like on $(-a, a)$.)

The reasoning for odd-like functions can be used to show that $f(x)$ is even-like on (a, b) if and only if $g(x) = f(x + \frac{a+b}{2})$ is an even function on $(-\frac{b-a}{2}, \frac{b-a}{2})$. If $f(x)$ is an integrable, even-like function on (a, b), then $g(x)$ is even on $(-\frac{b-a}{2}, \frac{b-a}{2})$ and so

$$\int_{a}^{b} f(x) dx = \int_{-\frac{b-a}{2}}^{\frac{b-a}{2}} g(x) dx = 2 \int_{0}^{\frac{b-a}{2}} g(x) dx = 2 \int_{a-b}^{b} f(x) dx.$$

Note also that for every function $f(x)$, the function $F(x) = f(a + b - x) + f(x)$ is even-like on (a, b).

Examples.

(i) $\cos nx$ is even-like on $(0, \pi)$ when n is even, and $\sin nx$ is even-like on $(0, \pi)$ when n is odd.

(ii) $\ln(x(4\pi - x)) = \ln x + \ln(4\pi - x)$ is even-like on the interval $(\pi, 3\pi)$.

Students may find it instructive to prove the following.
Exercises.

1. If $f(x)$ is differentiable and odd-like on (a, b), then $f'(x)$ is even-like on (a, b).
2. If $f(x)$ is differentiable and even-like on (a, b), then $f'(x)$ is odd-like on (a, b).
3. If $f(x)$ is odd-like (even-like) on (a, b) and n is a positive even number, then the nth derivative $f^{(n)}(x)$ is even-like (odd-like) on (a, b).
4. If $f(x)$ is a continuous, odd-like function on (a, b), then any antiderivative of $f(x)$ is even-like on (a, b).
5. If $f(x)$ is a continuous, even-like function on (a, b), then there is exactly one antiderivative of $f(x)$ that is odd-like on (a, b).
6. The set of all odd-like functions on (a, b) is a vector space, as is the set of all even-like functions on (a, b).

Acknowledgment. This work was based on a project for undergraduate research partially funded by the Commonwealth College of Penn State University. Two of the authors, Peter Hammond and Lisa Hazinski, are engineering students of Penn State University.

Reference

Keyboard Inequalities

Monte Zerger (mjzerger@adams.edu) observes that the F, $F^\#$, and G keys on the piano demonstrate mathematical truth. The Pythagoreans (“all is number”) found that the ratio of the frequencies in a perfect fifth is 3 to 2 and in a fourth is 4 to 3. We do not hear these when we strike piano keys because, to avoid having to have twelve pianos around the house, each tuned to a different key, we have adopted well-tempered tuning where the ratio of frequencies for any half-tone is $2^{1/12}$ to 1. So, in any octave we have

<table>
<thead>
<tr>
<th>Interval</th>
<th>Well-tempered Tuning</th>
<th>Pythagorean Tuning</th>
<th>Mean of the numbers 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F : C$</td>
<td>$2^{5/12}$ = 1.335...</td>
<td>4/3 = 1.333...</td>
<td>Harmonic: 4/3</td>
</tr>
<tr>
<td>$F^# : C$</td>
<td>$2^{6/12}$ = 1.414...</td>
<td>729/512 = 1.424...</td>
<td>Geometric: $\sqrt{2}$</td>
</tr>
<tr>
<td>$G : C$</td>
<td>$2^{7/12}$ = 1.498...</td>
<td>3/2 = 1.5</td>
<td>Arithmetic: 3/2</td>
</tr>
</tbody>
</table>

The three keys are telling us that

Harmonic mean \leq Geometric mean \leq Arithmetic mean.