B1 Suppose that \(P(x) = a_1 x + a_2 x^2 + \cdots + a_n x^n \) is a polynomial with integer coefficients, with \(a_1 \) odd. Suppose that \(e^{P(x)} = b_0 + b_1 x + b_2 x^2 + \cdots \) for all \(x \). Prove that \(b_k \) is nonzero for all \(k \geq 0 \).

B2 Let \(\times \) represent the cross product in \(\mathbb{R}^3 \). For what positive integers \(n \) does there exist a set \(S \subset \mathbb{R}^3 \) with exactly \(n \) elements such that
\[
S = \{ v \times w : v, w \in S \}.
\]

B3 Assign to each positive real number a color, either red or blue. Let \(D \) be the set of all distances \(d > 0 \) such that there are two points of the same color at distance \(d \) apart. Recolor the positive reals so that the numbers in \(D \) are red and the numbers not in \(D \) are blue. If we iterate this recoloring process, will we always end up with all the numbers red after a finite number of steps?

B4 Find all integers \(n \) with \(n \geq 4 \) for which there exists a sequence of distinct real numbers \(x_1, \ldots, x_n \) such that each of the sets
\[
\{x_1, x_2, x_3\}, \{x_2, x_3, x_4\}, \ldots, \{x_{n-2}, x_{n-1}, x_n\}, \{x_{n-1}, x_n, x_1\}, \text{ and } \{x_n, x_1, x_2\}
\]
forms a 3-term arithmetic progression when arranged in increasing order.

B5 For \(0 \leq p \leq 1/2 \), let \(X_1, X_2, \ldots \) be independent random variables such that
\[
X_i = \begin{cases}
1 & \text{with probability } p, \\
-1 & \text{with probability } p, \\
0 & \text{with probability } 1 - 2p,
\end{cases}
\]
for all \(i \geq 1 \). Given a positive integer \(n \) and integers \(b, a_1, \ldots, a_n \), let \(P(b, a_1, \ldots, a_n) \) denote the probability that \(a_1 X_1 + \cdots + a_n X_n = b \). For which values of \(p \) is it the case that
\[
P(0, a_1, \ldots, a_n) \geq P(b, a_1, \ldots, a_n)
\]
for all positive integers \(n \) and all integers \(b, a_1, \ldots, a_n \)?

B6 Find all continuous functions \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) such that
\[
f(xf(y)) + f(yf(x)) = 1 + f(x + y)
\]
for all \(x, y > 0 \).