Numerical and Experimental Comparisons of Oceanic Overflow

Thomas Gibson*, Fred Hohman†, Theresa Morrison‡, Shanon Reckinger**, Scott Reckinger††
* Baylor University, † University of Georgia, ‡ San Diego State University, ** Fairfield University, †† Brown University

ABSTRACT.
Overflows in the ocean occur when dense water flows down a continental slope into less dense ambient water. These density driven plumes occur naturally in various locations in the global ocean, but it is important to study idealized and small-scale models which allow for stronger confidence and control of parameters.

The work presented here is a direct qualitative and quantitative comparison between physical laboratory experiments and lab-scale numerical simulations.

Physical parameters are varied, including the Coriolis parameter, the inflow density anomaly, and the inflow volumetric flow rate. Laboratory experiments are conducted using a rotating square tank and high resolution camera mounted on the table in the rotating reference frame. Video results are digitized in order to compare directly to numerical simulations. The MIT General Circulation Model (MITgcm), a three dimensional, full physics ocean model, is used for the numerical simulations. These simulations are run under the full range of physical parameters corresponding to the specific laboratory experiments.

OVERFLOW LOCATIONS.

EXPERIMENTAL METHODS.

Goal: Obtain high-quality video to use as qualitative data to compare to numerical simulations. Our experiment is modular in that we can vary relevant parameters to observe different effects on the dense water plume.

Figure 1 and 2: A) Final frame from experiment. B) Plot of plume front every 5 seconds from experiment. C) Final frame from numerical model. D) Plot of plume front every 5 seconds from numerical model

RESULTS.

A variety of parameter combinations were used in our experiments. The comparison presented is of experiments using two different inflow densities but with a constant rotation rate and inflow across both experiments.

Figure 3: Assortment of experimental overflows to display visual plume diversity

FUTURE WORK.

Although we have acquired a great amount of both video and numerical data, we think more research can be done on both the experimental and numerical components of this project. Experimentally, we would like to see more cases done with a varying slope angle; this would add a new parameter to our existing set. We would also like to vary the inflow density even more to better observe the overflow trends. Numerically, we would like to run particularly interesting cases at higher resolutions to resolve the smaller scale features that our current simulations cannot display. More time also needs to be put into fine tuning the numerical parameters to better represent our experimental counterpart. Finally, more quantitative comparisons between recorded video converted into MATLAB data and our numerical simulations would provide us with further insight. We would like to look at transport, which it the flow rate of the plume down the slope. Additionally, we would like to find the entertainment of the plume to quantitatively measure the mixing.

REFERENCES.