Motif-based Clustering of Directed Networks

Thomas P. Reith, Laurie J. Heyer

Mathematics Department, Davidson College

Network Motifs
- Recurrent, statistically significant subgraphs found at higher frequencies in real networks than randomly generated networks
- Can be thought of as “simple building blocks of complex networks”

Feedforward Loop

Multi-Input Motif

Clustering Criteria
- Given a motif, we consider nodes that play the same role in different occurrences of the motif across the network to be more similar
- Nodes that never play the same role are less similar
- To quantify this similarity, we count the number of times each node of the network plays each specific role in the given motif

Simple Example

Algorithm Steps
1. Create an $m \times n$ matrix R, where m is the number of nodes in the network, n is the number of roles in the motif, and each entry R_{ij} is the number of times that node i plays role j.

If multiple role matrices are created based on different motifs and concatenated, the network can be clustered based on multiple motifs.

2. Apply agglomerative hierarchical clustering to the rows of R. Distance metrics and linkage criteria are user-defined.

Node Roles
- We define the role of a node as a unique combination of its in and out degrees
- Feedforward loop has three different roles:
 - “sender”
 - “middleman”
 - “receiver”
- Multi-Input Motif only has two roles:
 - “sender”
 - “receiver”

Subgraph Isomorphism
- How do we find all instances of a given motif in a network?
- Our method for directed graphs is extended from Ullmann’s method for undirected graphs
- Suppose there is an isomorphism between a graph (motif) G_1 and some subgraph of a larger graph G_2.
- We can encode this isomorphism in an $m \times n$ permutation matrix M, where $m = |V(G_1)|$ and $n = |V(G_2)|$.
- If vertex $i \in G_2$ maps to vertex $j \in G_1$, then we set $m_{ij} = 1$.

- Let A and B be the adjacency matrices for G_1 and G_2.
- M encodes an isomorphism iff $A \equiv \text{MBM}^T$ component-wise.
- Create initial matrix M_0 by setting $m_{ij} = 1$ if it is possible for vertex $i \in G_2$ to map to vertex $j \in G_1$, i.e., if indeg(i) ≤ indeg(j) and outdeg(i) ≤ outdeg(j).
- Recursively cycle through all possible permutation matrices M generated from M_0 and check if each encodes an isomorphism.
- Idea can be extended to graphs with colored edges
- Represent edge colors in adjacency matrices by 1 and -1
- Then M encodes an isomorphism iff $A \equiv \text{MBM}^T$, where $=$ represents the Hadamard product for component-wise multiplication

Clustering E. coli
- Network contains 423 nodes, 578 edges
- Each node represents DNA operon; each edge is directed from operon encoding transcription factor to operon regulated by said transcription factor
- Edges can be activating, repressing, or both
- Majority of feedforward motifs in the network are of coherent type, where direct effect has same sign as indirect effect

Potential Applications
- Gene networks (E. coli)
- Neuronal networks (C. elegans)
- Social networks
- Industrial networks
- Criminal networks
- Computer networks

Goal: Identify the “role” of each node in the network

References

Acknowledgements
- Davidson Research Initiative
- Dr. Timothy Chartier
- Students and faculty in summer research group