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I walked into a colleague’s office one day as he was grading calculus papers and he
showed me the following mistake that one of his students made:∫ 1

0
3x2 + 2x + 3 dx = (

3(1)2 + 2(1) + 3
) − (

3(0)2 + 2(0) + 3
) = 5.

We see that this student failed to find an anti-derivative before plugging in the limits
of integration. The correct computation is given by∫ 1

0
3x2 + 2x + 3 dx = (

(1)3 + (1)2 + 3(1)
) − (

(0)3 + (0)2 + 3(0)
) = 5.

By happy accident this student found a correct answer, but we know this trick won’t
always work or we wouldn’t devote so much time learning to integrate! Let’s call poly-
nomials like the one in the example self-integrating. A question naturally arises; how
many self-integrating polynomials are there over the interval [0, 1]? We will answer
that question in this capsule.

A quick check of the definition of a self-integrating polynomial indicates that the
only constant polynomial satisfing the conditon is p0(x) ≡ 0. We next check to see if
there are any self-integrating linear polynomials. Solving the linear equation∫ 1

0
a1x + a0 dx = ax + b|10

gives a1 = 2a0, so we define p1(x) = x + 1/2. A similar computation with a quadratic
polynomial ∫ 1

0
a2x2 + a1x + a0 dx = a2x2 + a1x + a0|10

leads to p2(x) = x2 + 2/3. At this point, we see a pattern and define

pk(x) = xk + k

k + 1
.
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It is easily verified that all polynomials of this form are self-integrating on the inter-
val [0, 1]. We now have a set of self-integrating polynomials

Sn =
{

pk(x) = xk + k

k + 1

}

for k = 1, 2 . . . , n. The linearity property of the integral ensures that any linear com-
bination of polynomials in Sn is self-integrating. In fact, the set of self-integrating
polynomials of degree at most n is an n-dimensional subspace of the vector space of
all polynomials of degree at most n. An exercise in elementary linear algebra demon-
strates that the set Sn is a basis for this subspace, and this description completely
characterizes the self-integrating polynomials up to any finite degree n.

For finite dimensions, this is about all we can say. However, if we move into infi-
nite dimensional vector spaces, the situation gets more interesting. Let P be the set of
all polynomials and let K be the set of all self-integrating polynomials on the inter-
val [0, 1]. Clearly K is an infinite-dimensional subspace of P . If we equip P with the
inner product,

〈 f, g〉 =
∫ 1

0
f (x)g(x) dx,

we can measure distance using the norm

‖ f − g‖2 = 〈 f − g, f − g〉1/2. (1)

Recall that L2[0, 1] is the set of all functions f such that ‖ f ‖2 < ∞ and that P and K
are subspaces of L2[0, 1]. It is known (see [1]) that P is dense in L2[0, 1]. Is K dense
too? If the polynomial p(x) ≡ 1 can be approximated to any accuracy by elements in
K , so can any positive integer power of x . It follows that K is dense in P and hence
also in L2[0, 1].

Taking our cue from the basis SN , we define the sequence

S =
{

xn + n

n + 1

}∞

n=1

.

It is easy to verify that S is contained in K . In Figure 1, we see the graph of some
of the terms of this sequence. These pictures suggest that this sequence converges to
1, but we must be careful about the type of convergence. For all 0 < x < 1, we have
pointwise convergence of

xn + n

n + 1

to 1 since xn → 0 for these values of x . At x = 1, we see that

xn + n

n + 1
= 1 + n

n + 1
→ 2,

so S does not converge in the pointwise sense to 1 in the interval [0, 1]. This sequence
does converge in L2[0, 1] to 1 as n → ∞ since this type of convergence only requires
that square of the distance between

xn + n

n + 1
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Figure 1. Some terms in the sequence S

and 1 as measured in L2[0, 1] tends to zero. Using the definition of distance given
in (1), the calculation below demonstrates this fact.∥∥∥∥1 −

(
xn + n

n + 1

)∥∥∥∥
2

2

=
∫ 1

0

(
1 −

(
xn + n

n + 1

))2

dx,

which can be shown to equal

n2

(2n + 1)(n + 1)2
,

and this expression vanishes as n → ∞.
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A Variant of the Partition Function
John F. Loase (splurge47@aol.com), David Lansing, Cassie Hryczaniuk, and Jamie
Cahoon, Concordia College, Bronxville, NY 10708

The topic that we consider in this note is the number of ways c(n) that one can
write a given positive integer n as a sum of primes. This is in contrast to the classic
partition function p(n) (sometimes called the Hardy-Ramanujan partition function),
which is the number of ways an integer n can be written as a sum of arbitrary positive
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