
Figures Circumscribing Circles 

Tom M. Apostol and Mamikon A. Mnatsakanian 

1. INTRODUCTION. The centroid of the boundary of an arbitrary triangle need not 
be at the same point as the centroid of its interior. But we have discovered that the two 
centroids are always collinear with the center of the inscribed circle, at distances in 
the ratio 3 : 2 from the center. We thought this charming fact must surely be known, 
but could find no mention of it in the literature. This paper generalizes this elegant 
and surprising result to any polygon that circumscribes a circle (Theorem 6). A key 
ingredient of the proof is a link to Archimedes' striking discovery concerning the area 
of a circular disk [4, p. 91], which for our purposes we prefer to state as follows: 

Theorem 1 (Archimedes). The area of a circular disk is equal to the product of its 
semiperimeter and its radius. 

Expressed as a formula, this becomes 

A = Pr, (1) 

where A is the area, P is the perimeter, and r is the radius of the disk. 
First we extend (1) to a large class of plane figures circumscribing a circle that 

we call circumgons, defined in section 2. They include arbitrary triangles, all regular 
polygons, some irregular polygons, and other figures composed of line segments and 
circular arcs. Examples are shown in Figures 1 through 4. Section 3 treats circum- 
gonal rings, plane regions lying between two similar circumgons. These rings have 
a constant width that replaces the radius in the corresponding extension of (1). We 
also show that all rings of constant width are necessarily circumgonal rings. Section 4 
generalizes the relation of the two centroids of a triangle mentioned above to arbitrary 
circumgons, and section 5 explores several relations for centroids associated with cir- 
cumgonal rings. Finally, section 6 mentions applications of circumgons to a class of 
isoperimetric problems that will be considered in detail elsewhere. 

2. CIRCUMGONS. To pave the way for the general definition of a circumgon, we 
begin with some examples. The prototype is a triangle. Every triangle circumscribes a 
circle whose center is the point of intersection of the three angle bisectors. By dividing 
a triangle into three smaller triangles with a common vertex at the center of the in- 
scribed circle, we easily see that (1) holds for any triangle of area A and perimeter P, 
where r is the radius of the inscribed circle. 

A polygon with more than three edges may or may not circumscribe a circle. We are 
interested in those that do, because they provide examples of circumgons. Every reg- 
ular polygon is a circumgon, but there are also nonregular circumgons, as illustrated 
in Figure lb. Like a triangle, any polygon circumscribing a circle is a circumgon. The 
inscribed circle is called the incircle, its radius is called the inradius, and its center is 
called the incenter. All bisectors of the interior angles of a circumgon intersect at the 
incenter. By dividing the polygon into triangles with one common vertex at the incen- 
ter, it is easily seen that (1) holds for every circumgon whose boundary is a convex 
polygon. 
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Figure 1. Example of circumgons: (a) a regular hexagon and (b) a nonregular pentagon. 

We will also extend (1) to more general circumgons, not necessarily convex, such as 
the polygon in Figure 2a, or the star-shaped polygon in Figure 2b, and to more general 
polygonal shapes, not necessarily closed, such as the example in Figure 4a. It may 
seem surprising that nonconvex polygons can circumscribe a circle. It's true that our 
examples are not ordinary garden variety circumscribing polygons, but when viewed 

appropriately, they do circumscribe a circle. For example, in Figure 2a only two edges 
of the polygon are tangent to the incircle. The other four edges do not even touch 
the incircle, but their extensions, shown by dotted lines, are tangent to the incircle. In 

Figure 2b, none of the edges of the pentagram touches the incircle, but each extended 
edge, shown by dotted lines, is tangent to the incircle. 

Figure 2. Some circumgonal regions: the area of each is its semiperimeter times its inradius. 

Building blocks of a circumgonal region. The definition of a general circumgonal 
region will be formulated in terms of simpler elements called building blocks, defined 
as follows. Start with a given circle, and consider a triangular wedge with one vertex 
at the center and with side opposite this vertex lying on a line tangent to the circle. We 
call this wedge a building block of the circumgonal region; the side opposite the center 
on the tangent line is called the outer edge of the block. The given circle is the in- 
circle, its radius is the inradius, and its center is the incenter. An example is shown in 

Figure 3a. Because a circular arc can be regarded as a limiting case of circumscribing 
polygons, we also allow any sector of the incircle to be a building block of a circum- 
gonal region, with its outer edge being the circular arc, as shown in Figure 3b. Thus, 
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Figure 3. A building block of a circumgonal region is either (a) a triangular wedge or (b) a circular sector. Its 

perimeter is the length of the outer edge. 

the area of each building block, whether it is a triangular wedge or a circular sector, is 
equal to half the length of its outer edge times the inradius. To extend Theorem 1, we 
simply define the perimeter of the block to be the length of its outer edge. This gives 
us: 

Theorem 2. The area of a circumgonal building block is equal to the product of its 
semiperimeter and its inradius. 

Definitions of circumgonal region and circumgon. A circumgonal region is the 
union of a finite set of nonoverlapping building blocks having the same incircle. The 
union of the corresponding outer edges is called a circumgon; the sum of the lengths 
of the outer edges is called the perimeter of the circumgon. 

Note. The perimeter of a circumgon, as just defined, is not its perimeter in the usual 
Euclidean sense unless the circumgon is closed. 

This definition immediately gives the following extension of Theorem 2: 

Theorem 3. The area of any circumgonal region is equal to the product of its 
semiperimeter and its inradius. 

Both Theorems 2 and 3 can be expressed by the same formula used for Theorem 1: 

A = 'Pr, (2) 

where A is the area, P is the perimeter, and r is the inradius of the circumgon. Two 
examples satisfying (2) are shown in Figure 4. 

Figure 4. More examples of circumgonal regions: the area of each is its semiperimeter times its inradius. 
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perimeter Po and area Ao perimeter APo and area A2Ao 

Figure 5. A simple closed curve with perimeter Po and area Ao used to form a ring with size factor L. 

3. CIRCUMGONAL RINGS. Figure 5 shows a simple type of ring, the region be- 
tween two similar nonoverlapping simple closed curves with similarity ratio X, where 
0 < X < 1. We call X the size factor because it determines the size of the inner curve 
relative to the outer one. If the outer region has perimeter Po and area A0, the inner 
region has perimeter XPo and area X2Ao, regardless of the choice of center of scaling. 

We are interested in rings formed by scaling a circumgonal region from its incenter. 
The inner and outer boundaries need not be closed curves because the circumgons 
need not be closed. For a general ring the perpendicular distance between the boundary 
curves need not be constant, even if portions of the boundaries are parallel, as in the 
case of two similar rectangles. 

If the ring is formed by scaling a circumgonal region from its incenter, it is easy 
to show that the perpendicular distance between corresponding parallel segments (or 
circular arcs) is a constant, which we call the width of the ring. 

ww 

a (C 

(a) (b) (c) 
Figure 6. Examples of circumgonal rings. The annulus in (a) and the trapezoid in (b) are extreme cases. 

Figure 6 shows examples of circumgonal rings. The circular annulus in (a) and the 
trapezoid in (b) are extreme cases. A more general example is shown in (c). In each 
case, the constant width w is the perpendicular distance between its parallel edges. It 
is also true that circumgonal rings are the only rings having constant width. In fact, we 
have: 

Theorem 4. 

(a) A circumgonal ring formed by scaling a circumgonal region from its incenter 
has constant width. 

(b) Conversely, consider any ring formed by two similar contours, where the outer 
contour consists of a finite set of line segments and circular arcs. If the ring has 
constant width, then it is necessarily a circumgonal ring. 
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Proof The proof of (a) is an easy exercise, which shows that the constant width w is 
given by 

w = (1 - X)r, 

where r is inradius of the larger circumgon and X < 1 is the scaling factor. 

A B 

*\ 

A' 

O 

Figure 7. Illustrating the proof that every ring of constant width is a circumgonal ring. 

To prove (b), refer to Figure 7, which shows a trapezoidal portion of the ring formed 
by parallel line segments AB and A'B' having w as the perpendicular distance between 
them. The intersection O of the lines through AA' and BB' is the center of similarity, 
and OA' = WOA, where ) (< 1) is the scaling factor. Let Q be the foot of a perpen- 
dicular from O to the line through AB. The circle with center O and radius OQ is 

tangent to the line through AB, hence AB is an outer edge of a circumgon with in- 
center O and inradius OQ. By similarity, point Q' on OQ satisfies OQ' = kOQ, and 
the circle with center O and radius OQ' is tangent to the line through A'B', so seg- 
ment A'B' is an outer edge of a circumgon with incenter O and inradius OQ'. But 
w = OQ - OQ' = (1 - ,)OQ, hence OQ = w/(1 - X,) and OQ' = kw/(1 - 

.). 
Thus 

the inradii and incenter O are completely determined by the width w and the scaling 
factor ,, as given above. This means that every trapezoidal portion of the ring circum- 
scribes the same pair of circles. Consequently, the entire polygonal part of the ring is 

circumgonal with incenter 0. The proof is even simpler for each portion of the ring 
that is a circular sector (of width w). U 

The next result extends Theorem 3 to circumgonal rings. 

Theorem 5. The area of any circumgonal ring is equal to the product of its semipe- 
rimeter and its (constant) width. 

This can also be expressed as a formula resembling that in (2): 

A =- Pw, (3) 

where A is the area of the ring, P is its total perimeter, and w is its constant width. 
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Proof If the outer boundary has perimeter Po and encloses a region of area A0, then 
the ring has area A = (1 - X2)Ao0 and total perimeter P = (1 + X)Po. For a circumgo- 
nal ring with inradius r of the larger circumgon we have Ao = Por/2, from which we 
find that 

A = (1 - X)(1 + X)Por/2 = (1 - X)Pr/2 = Pw/2, 

as asserted. m 

It is not surprising that (3) gives the formula for the area of a circular ring (Fig- 
ure 6a). But it is reassuring to learn that (3) also becomes the well-known formula 
for the area of a trapezoid, average base times altitude. In fact, in Figure 6b the 
semiperimeter of the ring is the average length of the two parallel edges, and the width 
of the ring is the altitude of the trapezoid. 

4. CENTROIDS OF CIRCUMGONAL REGIONS. This section uncovers a simple 
but surprising relation that always holds between the area centroid of a circumgonal 
region and the centroid of its boundary. Specifically, denote by C(A) the vector from 
the incenter O to the area centroid, and by C(B) the vector from O to the centroid 
of the boundary curve (with respect to arclength). Figure 8b illustrates these for a 

triangle. We will prove that, for a given circumgon, the location of one of the centroids 
determines the location of the other. In fact, we have: 

Theorem 6. The area centroid C(A) of any circumgonal region and the centroid C(B) 
of its boundary are collinear with the incenter, and are related by the equation 

C(B) = C(A). (4) 

Proof A classical result of Archimedes [4, p. 201] states that the area centroid of a 

triangle is at the intersection of its medians. It is also known [2, p. 11 ] that the distance 
from each vertex to the centroid is two-thirds the length of the median from that vertex. 

Apply this to the triangular block with incenter O and outer edge of length a shown in 

Figure 8a. In vector notation, C(A) = (2/3)C(B), where C(B) is the midpoint of the 
outer edge. Hence 

C(B) = C(A), (5) 

o. 
...C(B) O..... C(A) . 0..C(B) 

C(A) 
. 

length a 

(a) (b) 

Figure 8. Centroid C(A) = 2C(B) for (a) a triangular block, and (b) for any triangle with incenter 0. 
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which proves (4) for a triangular block. Now take any polygonal circumgon with trian- 
gular building blocks having outer edges of lengths al, ..., an, a common vertex at the 
incenter 0, and respective areas A1,...., A,. Figure 8b shows the case of a triangle. 
Denote by C(AI),..., C(An) the corresponding vectors from the incenter O to the 
area centroid of each triangular block. The area centroid of their union is at the point 
described by the vector 

-= 
AkC(Ak) C(A) = . (6) 

Ek=1 Ak 

In (6), write Ak = akr/2, where r is the inradius. The common factor r/2 cancels, 
and (6) becomes 

n= akC(Ak 
C(A) = n a(7) 

Lk=lak 

On the other hand, the vector C(B) from O to the centroid of the boundary is 

n akC(Bk 
C(B) =• 

Ek=l ak 

where C(Bk) denotes the vector from O to the midpoint of the kth outer edge. Apply 
(5) to each triangular block to find that C(Bk) = (3/2)C(Ak). Use this in the last equa- 
tion and compare with (7) to obtain (4) for a polygonal circumgon. Because a circular 
arc can be regarded as a limiting case of a circumscribing polygon, formula (4) also 
holds for circumgons that include circular arcs as part of their boundaries. U 

We can also deduce (4) for a circular sector in a different manner. It is known [2, 
p. 12] that the area centroid of a circular sector of radius r subtending a central angle 2a 
lies on the radial line that bisects the sector at a distance (2/3)r(sina)/a from the 
center, and that the centroid of the outer arc is at a distance r (sin a)//a from the center. 
Consequently, (4) holds for every circular sectorial building block of a circumgon. 

Relation (4) holds in particular for any triangle, and also for any polygon circum- 
scribing a circle. Because these two cases are so basic, we restate them here as corol- 
laries: 

Corollary 7. 

(a) The area centroid C(A) of any triangle and the centroid C(B) of its boundary 
are collinear with the incenter and are related by the equation 

C(B) = 2C(A). (8) 

(b) The same relation holds for any polygon circumscribing a circle. 

The results for these two classical cases are so simple that we thought they must 
surely be known, but we could find neither of them in the literature. In fact, the analysis 
in [1] suggests that even for a triangle the result was not previously recorded. 

Another derivation of Corollary 7(a) can be given by referring to Figure 9. It is 
known that the centroid of the boundary of a triangle is the incenter 0' of the me- 
dial triangle shown. Both triangles have common median lines, hence a common area 
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centroid at point M. The incenter O of the larger triangle is collinear with 0' and M, 
and its inradius is twice that of the smaller triangle, so OM = 2MO'. Consequently 
00' = OM + MO' = (3/2)OM, in agreement with (8). 

IN 
I N 

Figure 9. Another argument showing that C(B) = (3/2)C(A) for a triangle. 

5. CENTROIDS OF CIRCUMGONAL RINGS. There are companion results for 
the centroid of a circumgonal ring. For simplicity, we refer to a ring with size factor X 
simply as a k-ring. First we have: 

Theorem 8. The area centroid C(Aring) of any circumgonal ?.-ring is related to the 
area centroid C(Aouter) of the outer circumgon by the equation 

1 - 3 
C(Aring) = 

2 

C(Aouter). (9) 
1 - X2 

Proof Let C(Ainner) denote the area centroid of the inner circumgon, and let Aouter 
and Ainner denote the areas of the outer and inner circumgons, respectively. Equating 
moments we have 

(Aouter - Ainner)C(Aring) + AinnerC(Ainner) = AouterC(Aouter). 

Because of the relations 

C(Ainner) = XC(Aouter), Ainner = 
.2Aouter 

the foregoing equation reduces to (9). U 

Note that (4) is obtained as a limiting case of (9) as X -* 1. In fact, our original 
discovery of (4) was obtained as this limiting case of (9). 

Next, we extend Theorem 6 by relating the area centroid C(Aring) of any circumgo- 
nal ring with the centroid C(Btotal) of its full boundary. 

Theorem 9. The area centroid C(Aring) of any circumgonal X-ring is related to the 
centroid C(Btotal) of its boundary by the equation 

2 x2 + ? 1 
C(Aring) X2+ C(Btotal). (10) 

3 h2 + 

Proof Denote the vectors from the incenter to the centroids of the inner and outer 
boundaries, respectively, by C(Binner) and C(Bouter). Let Pin and Pout denote the corre- 
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sponding inner and outer perimeters. The definition of centroid states that 

PinC(Binner) + PoutC(Bouter) C(Btotal) Pout 
Pin + Pout 

Because of the relation Pin = Po,,,ut this becomes 

C(Ba) = XC(Binner) + C(Bouter) C(Btotal) 
. 

(11) 
)+1 

But C(Binner) = 
,C(Bouter), 

and C(Bouter) = (3/2)C(Aouter) by (4), so (11) can be writ- 
ten as 

3 x2 + 1 
C(Btotal) = C(Aouter), 2 X+l 

which, together with (9), gives 

2 h + 1 1 - 
-3 

2 
X2_• 

+ l 
C(Aring) = 2 + 1 - C(Btotal) = X2 

+ 1 C(Btotal), 
3 X2 + I I - X2 3 X2 + I 

as asserted. N 

The next theorem relates the area centroid C(Aring) of a circumgonal ring to the 
centroids of its outer and inner boundary curves. 

Theorem 10. For any circumgonal X-ring the following hold: 

2 x2 + x ? 1 
C(Aring) = C(Bouter), (12) 

2 +2 X ? 1 
C(Aring) = -1) C(Binner), (13) 

3 X(X + 1) 

2 

,2 
+ x 

• 

1 
C(Aring) 

2 
k+x+(C(Bouter) - C(Binner)), (14) C(A3i 1 - 2 

C(Aring) - C(Binner) = 2 (C(Bouter) 
- 

C(Aring)). (15) 1 + 
2, 

Proof Theorem 9 and (11) yield (12), which implies (13). From (12) and (13) we 
infer (14). From (13) we obtain 

(1 - 
.)(, 

+ 2) (1 - 
,)(. 

+ 2) 
C(Aring) - C(Binner) = 

3(X) + 1) 
C(Binner) = 

3( + 1) C(Bouter), 3X(X + 1) 3(X + 1) 

whereas (12) gives us 

(1 - X)(1 + 2X) 
C(Bouter) - C(Aring) = 

C3(+- 1) C(Bouter) 
3(X + 1) 

Comparing the last two equations we get (15). E 
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For a trapezoid, the result in (15) was known to Archimedes [4, Proposition 15, 
p. 201]. 

Corollary 11 (Archimedes). The area centroid of a trapezoid lies on the segment 
joining the midpoints of its parallel edges and divides this segment in the ratio 
(X + 2)/(1 + 2k) when taken from the shorter parallel edge to the longer, the ra- 
tio of whose lengths is X. 

Note. Archimedes does not state explicitly from where the division point is measured, 
but this is implicit in his accompanying diagram. 

6. APPLICATIONS OF CIRCUMGONS TO ISOPERIMETRIC PROBLEMS. 
Traditional isoperimetric problems compare different plane regions having equal 
perimeters and ask for the region of maximal area. It is known [3, p. 373], [5, p. 83] 
that among all plane regions with a given perimeter, the circle encloses the largest area. 

Equivalently, among all plane regions with a given area, the circle has the smallest 

perimeter. 
Many isoperimetric problems deal with specific contours, such as polygons. For 

example, among all polygons with a given number of sides, the regular ones have 
maximal area for given perimeter, or minimal perimeter for given area. 

A polygon is defined by its sides and its angles. We can imagine a flexible polygon 
with fixed sides hinged at the vertices. Its perimeter is fixed but its area can be varied 

by changing the angles. An elegant well-known theorem [5, Theorem 12.5a], states: 

A polygon inscribed in a circle has larger area than any other polygon with sides 
of the same lengths (therefore of the same perimeter) in the same order 

Using properties of circumgons obtained in this article, we can establish a dual to this 
theorem: 

A polygon circumscribing a circle has a smaller area than any other polygon 
with the same perimeter and the same interior angles in a given order 

A proof of this and more general results, including extensions to 3-space, will be given 
elsewhere. 
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The Infinitude of the Primes 

We assume that there are only finitely many primes Pi P..., Pk. If mn is a non- 
negative integer, then each (ordered) partition of m into k parts (in = a + 
S.. + ak, with 0 ai < m for i = 

1,2,..., k) gives rise to a natural number 
n = p .. pak. Every natural number n is of this form for some in. Therefore, 

I k 

n np -..y??p, tL>tLE 

where the inner sum is extended over all k-tuples (a .... ak) with the property 
that al + ... + ak =- mIn. There are at most mnk such k-tuples. Combined with the 
fact that pi > 2, this gives 

< k0 

Zt- _ ; 
ll tt 1 

This contradiction shows the set of primes is not finite. 

Remark. A more delicate argument would reveal that, in fact, 

L , 

where the sum is taken over all primes p. 

--Submitted by Dinesh Singh 
University of Delhi, India 
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