
Investigations Into d’Alembert’s Definition of Limit∗

(Real Analysis Version)

David Ruch†

October 24, 2022

1 Introduction

The modern definition of a limit evolved over many decades. One of the earliest attempts at a precise
definition is credited to Jean-Baptiste le Rond d’Alembert (1717–1783), a French mathematician,
philosopher and physicist.1 Among his many accomplishments, d’Alembert was a co-editor of the
Encyclopédie, an important general encyclopedia published in France between 1751 and 1772. This
work is regarded as a significant achievement of the Enlightenment movement in Europe.

D’Alembert argued in two 1754 articles of the Encyclopédie that the theory of limits should be put
on a firm foundation.2 As a philosopher, he was disturbed by critics who pointed out logical problems
with limits and the foundations of calculus. D’Alembert recognized the significant challenges posed
of these criticisms; in [d’Alembert, 1754b], for example, he wrote that3

This metaphysics [of calculus], about which so much has been written, is even more important,
and perhaps more difficult to develop than the rules of calculus themselves.

In this project we will investigate d’Alembert’s limit definition and study the similarities and differ-
ences with our modern definition.

∗This updated version of the project replaces the version that was dated February 7, 2020 and published in Con-
vergence in February 2020.

†Department of Mathematical and Computer Sciences, Metropolitan State University of Denver, Denver, CO;
ruch@msudenver.edu

1Early chapters of d’Alembert’s biography read like something out of Masterpiece Theater. He was born out of
wedlock and left as an infant at the church Saint Jean le Rond in Paris. His mother, Claudine Guérin de Tencin,
was a runaway nun who established a well-known Paris salon, a carefully orchestrated social gathering that brought
together important writers, philosophers, scientists, artists and aristocrats for the purpose of intellectual and political
discussions. Tencin never acknowledged d’Alembert as her son, and his father, Louis-Camus Destouches, found another
woman to raise young Jean. Destouches died in 1726, but left funds for Jean’s education. D’Alembert did well in
school and became active as an adult in the philosophy, literature, science and mathematics of his day, standing “at
the very heart of the Enlightenment with interests and activities that touched on every one of its aspects” [Hankins,
1990, p. 1].

2The first of these articles was entitled “Limite (Mathématiques),” and the second “Calcul différentiel.”
3All translations of d’Alembert excerpts in this project were prepared by Janet Heine Barnett, Colorado State

University Pueblo, 2022.
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2 D’Alembert’s Limit Definition

By 1754 mathematical techniques using calculus were quite advanced. D’Alembert won a 1747 prize
for his work in partial differential equations, but became embroiled in arguments with Leonhard Euler
(1707–1783) and others over methodology and foundational issues. These squabbles contributed to
his interest in clearing up the foundations of limits and convergence.

Here is d’Alembert’s limit definition from the Encyclopédie [d’Alembert, 1754a]:

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Limit (Mathematics). We say that a magnitude is the limit of another magnitude, when
the second can approach the first more closely than any given magnitude, as small as we
wish to assume, yet without the approaching magnitude ever being allowed to surpass the
magnitude to which it approaches; so that the difference of such a quantity and its limit is
absolutely unassignable.

For example, suppose we have two polygons, one inscribed and the other circumscribed
about a circle, it is clear that we can increase the [number of] sides as much as we wish;
and in that case, each polygon will always come closer and closer to the circumference of the
circle, the contour of the inscribed polygon increasing, and that of the circumscribed [polygon]
decreasing; but the perimeter or the contour of the first will never surpass the length of the
circumference, and that of the second will never be smaller than that same circumference;
the circumference of the circle is thus the limit of the increase of the first polygon, and of
the decrease of the second.

. . . . . . . . .

Strictly speaking, the limit never coincides, or becomes equal to the quantity for which it
is the limit; but that quantity always approaches the limit closer and closer, and may differ
from it by as little as we wish. The circle, for example, is the limit of the inscribed and
circumscribed polygons; for it never strictly coincides with them, although they may become
infinitely close.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Note that this definition is lacking in precise, modern mathematical notation. Also observe that
the polygon/circle example is for the limit of a sequence. Here is a standard first-year calculus book
definition of limit for a sequence:

First-Year Calculus Definition. A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n → ∞

if we can make the terms an as close to L as we like by taking n sufficiently large.

Let’s examine some examples.

Task 1 Draw a diagram for a circle of radius 1 and an inscribed regular polygon with n = 8

sides. Use some basic trigonometry to find the exact length of the polygon’s perimeter.
How close is it to the circle’s circumference?
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Task 2 Use modern subscript notation for an appropriate sequence to rewrite d’Alembert’s
“inscribed polygon → circle” limit example. Assume for simplicity that the inscribed
polygons are regular with n sides centered at the circle’s center. These polygons have
perimeter formula

perimeter = 2n · radius · sin (π/n) .

As a bonus, derive the perimeter formula, and use calculus to confirm this limit.4

Task 3 Consider d’Alembert’s “inscribed polygon → circle” limit example and his definition.
For “given magnitude” 0.1 and a circle of radius 1, how many sides are needed for the
inscribed polygon to guarantee that “the second can approach the first more closely than”
the given magnitude 0.1? Technology will be helpful! How many sides are needed for
given magnitude 0.01?

Task 4 Consider the sequence {an} with an =
n

2n+ 1
.

(a) Find the limit of this sequence by any means.
(b) For “given magnitude” 0.01, suppose we want an and its limit to “differ by as little

as” 0.01. What is “sufficiently large” for n to guarantee that an and its limit
differ by 0.01 or less?

We have seen that this “given magnitude” is a measure of an allowable difference or tolerance
between a sequence term an and the limit itself. We next generalize this example a bit, replacing
“given magnitude” 0.01 by a generic tolerance value ϵ.

Task 5 For the sequence
{

n

2n+ 1

}
, let ϵ be an arbitrary small positive number. Suppose we

want an and its limit to differ by less than ϵ. In terms of ϵ, what is “sufficiently large”
for n?

Task 6 Look closely at d’Alembert’s phrase “strictly speaking, the limit never coincides, or
becomes equal to the quantity for which it is the limit” and notice that it does not
appear in the First-Year Calculus definition. Find a simple convergent sequence that
violates this requirement of d’Alembert’s limit definition.

Task 7 Consider d’Alembert’s phrase “without the approaching magnitude ever being allowed to
surpass the magnitude to which it approaches” and notice that it does not appear in the
First-Year Calculus definition. Find a simple convergent sequence that violates this
requirement of d’Alembert’s limit definition.

Task 8 Use modern notation to help rewrite d’Alembert’s limit definition for sequences with
the quantifiers “for all” and “there exists” and inequalities. The First-Year Calculus
Definition and a graph of the sequence {an} should be helpful in getting started. You
should introduce a variable ϵ to bound the distance between the quantities, and another
variable M to measure n being “sufficiently large.” Be sure to include d’Alembert’s
requirements that sequence terms can neither surpass nor coincide with the limit in
your answer.

4Notice this example gives a way to approximate π. There are many other ways to estimate π without trigonometry,
including Archimedes’ method.
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As we have seen, d’Alembert’s 1754 limit definition doesn’t fully apply to some types of sequences
studied by today’s mathematicians. It is interesting to note that during d’Alembert’s era there was
some debate regarding whether or not a quantity could ever reach or surpass its limit.5 Based on
your work with d’Alembert’s definition of limit, what do you think was d’Alembert’s opinion on
these questions?

During the 1800s mathematicians reached a consensus that limits could be attained, and a con-
vergent sequence could indeed oscillate about its limit. We see the First-Year Calculus definition
allows for these possibilities; however, it is too vague for actually constructing complex proofs. We
can remedy this problem by clarifying the logic and converting some verbal descriptions into algebraic
inequalities.

Task 9 Use the quantifiers “for all” and “there exists” and inequalities to rewrite the First-Year
Calculus limit definition for sequences, without the extra requirements that d’Alembert
imposed in his definition. Then comment on the differences between this definition
and your definition from Task 8.

Task 10 Use your definition from Task 9 to prove that sequence
{

n

2n+ 1

}
converges.

Task 11 Suppose that a sequence {cn} converges to limit 1. Use your definition from Task 9
to prove that there exists a natural number M for which 0.9 < cn < 1.1 whenever
n ≥ M .

3 Limit Properties

D’Alembert also made two assertions about limit properties in his article [d’Alembert, 1754a], and
gave a proof of one property using his limit definition.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

[Claim] 1st. If two magnitudes are the limit of the same magnitude, these two magnitudes
will be equal to each other.

[Claim] 2nd. Suppose A×B is the product of two magnitudes A, B. Let us suppose that
C is the limit of the magnitude A and D the limit of the quantity B. I say that C ×D, the
product of the limits, will necessarily be the limit of A×B, the product of the two magnitudes
A, B.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

One quality of a good modern definition is that it should be useful in constructing proofs of a
concept’s properties. Let’s investigate d’Alembert’s first uniqueness claim and his proof.

Task 12 Write d’Alembert’s Claim 1st for sequences in modern notation.

5For more on these issues in the evolution of the limit concept, see J. Grabiner’s fascinating book [Grabiner, 2010].
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Here is d’Alembert’s proof of uniqueness from [d’Alembert, 1754b].

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Let Z and X be limits of the same quantity Y , I say that X = Z; because if there were
some difference V between them, let X = Z ± V ; by the hypothesis, the quantity Y can
approach X as near as we wish; that is, the difference between Y and X can be as small
as we wish. Therefore, since Z differs from X by the quantity V , it follows that Y cannot
approach Z any closer than the quantity V , and consequently that Z is not the limit of Y ,
which is contrary to the hypothesis.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 13 Rewrite this uniqueness proof using your modern definition from Task 9.

The proof of d’Alembert’s Claim 2nd is harder and d’Alembert did not give one in his article.

Task 14 Write d’Alembert’s Claim 2nd for sequences in modern notation.

The next task investigates a proof for a special case of the second claim on the product of sequences
to give you some appreciation of the challenges. It may give you ideas for writing a general proof!

Task 15 Suppose you know a sequence {an} is within 0.01 of its limit C = 5 if n is larger than
the integer N1 = 47. Also suppose you know a sequence {bn} is within 0.01 of its limit
D = 3 if n is larger than the integer N2 = 92. Determine how far you must go with
sequence {anbn} to get close to the product of limits CD = 15. How little difference
between anbn and CD can you guarantee if you go out far enough?

Task 16 Use ideas from the previous task to prove d’Alembert’s Claim 2nd.

4 Conclusion

Historians have noted that definitions of limit were given verbally by mathematicians of the 1600s
and 1700s. However, to make these ideas useful in rigorous proofs, it is important to translate the
verbal limit definition into one with clear logic and algebraic language, as you accomplished in Task
9. The mathematician Augustin-Louis Cauchy (1789–1867) is usually credited with being the first
to do this, using ϵ and precise inequalities in some of his proofs. Even so, his definition of limit was
verbal and similar to d’Alembert’s, except that for Cauchy limits could be attained and surpassed,
as in the modern definition. The modern limit definition we see today finally matured in the work
of Karl Weierstrass (1789–1867) and his students.

How influential was d’Alembert’s limit definition? This is hard to say, since d’Alembert only
used his definition to carry out one proof. Certainly his advocacy for a precise limit definition may
have influenced mathematicians such as Cauchy, and can thus be considered a worthy contribution
to the evolution of the rigorous limit definition we use today.
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Notes to Instructors

PSP Content: Topics and Goals
This Primary Source Project (PSP) is designed to investigate the definition of limit for sequences, be-
ginning with d’Alembert’s definition and a modern Introductory Calculus text definition. Similarities
and differences are explored.

Two versions of this project are available, for very different audiences.

• One version is aimed at Real Analysis students. This is the version you are
currently reading. D’Alembert’s definition is completely verbal, and the Section
2 tasks lead students through some examples and a translation of this definition
to one with modern notation and quantifiers. Students are asked to find examples
illustrating the difference between the modern and d’Alembert definitions. Section
3 investigates two limit properties stated by d’Alembert, including modern proofs
of the properties. Some historical remarks are given in a concluding section.

• A shorter version of this mini-PSP is aimed at Calculus 2 students studying se-
quences. Section 3 on limit properties and some of the more technical tasks in
Section 2 are omitted from this version.

The specific content goals of this version of the project are as follows.

1. Develop a modern limit definition with quantifiers for sequences based on d’Alembert’s defini-
tion and an Introductory Calculus text definition.

2. Analyze subtleties of the limit definitions: whether sequence terms can surpass or coincide with
the limit.

3. Develop facility with the modern limit definition by using it to prove a given sequence converges.

4. Students also analyze the uniqueness property of limits and explore the limit of a product of
convergent sequences. A final task asks for a general proof of the limit of a product of convergent
sequences.

Student Prerequisites
This project is written for a course in Real Analysis with the assumption that students have become
somewhat comfortable with quantifiers, but no other background is assumed. The author has used
this PSP beginning on Day 1 of the course.

PSP Design and Task Commentary
The PSP is designed to be used largely in place of a textbook section introducing the definition of
limit for sequences. The differences between the d’Alembert and modern definition can help students
realize subtleties and the precision of the modern definition.

D’Alembert’s definition is completely verbal, and the Section 2 tasks lead students through some
examples and a translation of this definition to one with modern notation and quantifiers. Students
are asked to find examples illustrating the difference between the modern and d’Alembert definitions.
Section 3 investigates two limit properties stated by d’Alembert, including modern proofs of the
properties. Some historical remarks are given in a concluding section.
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Instructors may want to use Task 5 to discuss the Archimedean property of the real numbers,
which most students take for granted.

Task 8 may be difficult for students. Encouraging students to draw a plot and labels for ϵ and M

should help. Leading questions to help them realize that the definition needs to start with “for all
ϵ > 0” may also be helpful. Including d’Alembert’s requirements that sequence terms can’t “surpass”
or coincide with the limit is challenging but pedagogically useful.

Note that d’Alembert’s uniqueness proof, using contradiction, is different than most traditional
Analysis book proofs. Students may need help with the inequalities for Task 13. Task 11 should be
helpful for converting to modern epsilon terminology the fact that sequence Y is assumed to converge
to limit X.

Students may need a hint for Task 15 on the product of limits, something like anbn − 5 · 3 =

(anbn − an · 3) + (an · 3− 5 · 3) or a verbal or visual version of this identity. The proof of the more
general result in the last task is very similar, but gives students practice writing proofs with epsilons.

Suggestions for Classroom Implementation
Advanced reading of the project and some task work before each class is ideal but not necessary. See
the sample schedule below for ideas.

LATEX code of this entire mini-PSP is available from the author by request to facilitate preparation
of advanced preparation / reading guides or ‘in-class worksheets’ based on tasks included in the
project. The mini-PSP itself can also be modified by instructors as desired to better suit their goals
for the course.

Sample Implementation Schedule (based on a 50-minute class period)
This PSP is designed to take two class days, although a third class day might be preferable if time
permits.

Before the first class, students read through the d’Alembert excerpt and do Tasks 1–3. After a
class discussion of these tasks, students work through Tasks 4–8 in groups. Task 8 is critical, so a
class discussion after the group work is advisable to make sure everyone understands this task. Tasks
9–11 are then assigned for homework, but Tasks 9 and 10 need to discussed at the beginning of the
second class. Then students read d’Alembert’s limit properties and his uniqueness proof, and work
through Tasks 12 and 13 in groups. For time purposes, you may want to give a polished version of
the proof in Task 13 as homework. Student groups then work on Tasks 14 and 15. If you have only
two class periods, you may want to have them finish Task 15 for homework and save Task 16 for a
later class discussion. Alternatively, continued group work on Tasks 15 and 16 can take place during
a third class period with a polished version of the proof in Task 16 assigned as homework.

Connections to other Primary Source Projects
The following additional projects based on primary sources are also freely available for use in an in-
troductory real analysis course; the PSP author name for each is listed parenthetically, along with the
project topic if this is not evident from the PSP title. Shorter PSPs that can be completed in at most
2 class periods are designated with an asterisk (*). Classroom-ready versions of the last two projects
listed can be downloaded from https://digitalcommons.ursinus.edu/triumphs_topology; all
other listed projects are available at https://digitalcommons.ursinus.edu/triumphs_analysis.
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• Why be so Critical? 19th Century Mathematics and the Origins of Analysis* (Janet Heine
Barnett)

• Investigations into Bolzano’s Bounded Set Theorem (David Ruch)
• Stitching Dedekind Cuts to Construct the Real Numbers (Michael Saclolo)

Also suitable for use in an Introduction to Proofs course.
• Bolzano on Continuity and the Intermediate Value Theorem (David Ruch)
• Understanding Compactness: Early Work, Uniform Continuity to the Heine-Borel Theorem

(Naveen Somasunderam)
• An Introduction to a Rigorous Definition of Derivative (David Ruch)
• Rigorous Debates over Debatable Rigor: Monster Functions in Real (Janet Heine Barnett;

properties of derivatives, Intermediate Value Property)
• The Mean Value Theorem(David Ruch)
• The Definite Integrals of Cauchy and Riemann (David Ruch)
• Henri Lebesgue and the Development of the Integral Concept* (Janet Heine Barnett)
• Euler’s Rediscovery of e ∗ (David Ruch; sequence convergence, series & sequence expressions

for e)
• Abel and Cauchy on a Rigorous Approach to Infinite Series (David Ruch)
• The Cantor Set before Cantor* (Nicholas A. Scoville)

Also suitable for use in a course on topology.
• Topology from Analysis* (Nicholas A. Scoville)

Also suitable for use in a course on topology.
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