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Trigonometry is concerned with the measurements of angles about a central point (or of arcs

of circles centered at that point) and quantities, geometrical and otherwise, which depend on the

sizes of such angles (or the lengths of the corresponding arcs). It is one of those subjects that

has become a standard part of the toolbox of every scientist and applied mathematician. Today

an introduction to trigonometry is normally part of the mathematical preparation for the study of

calculus and other forms of mathematical analysis, as the trigonometric functions commonly make

appearances in applications of mathematics to the sciences when the mathematical description of

cyclical phenomena is needed. This project is one of a series of curricular units that tell some of

the story of where and how the central ideas of this subject first emerged, in an attempt to provide

context for the study of this important mathematical theory. Readers who work through the entire

collection of units will encounter six milestones in the history of the development of trigonometry. In

this unit, we examine the second of these six episodes by examining a modern reconstruction of a lost

table of chords known to have been compiled by the Greek mathematician-astronomer Hipparchus

of Rhodes.

1 Hipparchus, Ptolemy, and Astronomy in Ancient Greece

Hipparchus was an astronomer, geographer, and mathematician who lived during the second century

BCE.1 As is the case with most notable figures of the ancient world who were not military, political,

or religious leaders, we know very little about his life, save that he was born in Nicaea, the major

city of the kingdom of Bithynia (the region around present-day Istanbul, Turkey), that he died in

Rhodes (the largest of the Aegean islands), and that he was an accomplished astronomer. He was

among the first to set forth a heliocentric planetary theory, one that put the Sun at the center of

a system of planets which orbit it.2 Only one of his writings still survive, and this is a very minor

treatise; our interest in him here is due to the fact that he was cited significantly by another much

more influential astronomer, Claudius Ptolemy, who lived some 300 years later in the second century

∗Department of Mathematics, Xavier University, Cincinnati, OH, 45207-4441; otero@xavier.edu.
1Hipparchus was likely a contemporary of one of the most famous athletes of the ancient world, Leonidas, who also

hailed from Rhodes. Leonidas was a celebrated runner, who won Olympic crowns in four successive Olympic games
during the middle of the second century BCE. In fact, his record of twelve Olympic crowns for victories in Olympic
races throughout his athletic career stood unbeaten for over 2000 years until Michael Phelps, the American swimmer,
won his thirteenth gold medal at the Rio de Janeiro Olympics in the summer of 2016.

2Based on mentions of him by other writers, it appears that Aristarchus of Samos was the first to posit that the
Sun was the center of the universe; Aristarchus lived about a century before Hipparchus.
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CE in Alexandria in Egypt. Ptolemy’s reference to the work of Hipparchus helped to preserve for

modern readers some of the earlier astronomer’s work.

Ptolemy was the author of many scientific treatises that survive to the present, the most important

of which was the Almagest,3 a compendium of his own astronomical theories. In this work Ptolemy

illustrated with geometric demonstrations his geocentric model for the movement of the Sun, Moon,

and planets about the Earth.4

What characterized these Greek contributions to the development of astronomy was their incor-

poration of ideas from new advances in the study of geometry. These theories gave them the means

to describe more clearly how it is that heavenly objects move the way they do, descriptions based on

objectively deductive principles about the nature of geometrical objects. In this project, readers will

be introduced to two important developments in the genesis of trigonometry: the decision to apply

the new deductive science of geometry—in particular, the geometry of the circle and sphere—to the

study of the dynamics of the heavens; and also, the creation of a two-column table to represent

interrelated measurements between arcs in a circle and the chords that span those arcs, an early

precursor to our modern trigonometric functions.

2 Circles and Spheres: Geometry in the Service of Astronomy

In the hands of Greek philosophers, mathematics leapt beyond its use as a collection of systems

for counting and measuring the world to become a deductive science that collected abstract truths,

as well as the means for certifying those truths. They erected systematic theories about points and

lines, triangles and circles, cones and spheres,5 and before long, thinkers like Ptolemy employed these

theories to describe—and explain—the movements of heavenly bodies. In the following passage drawn

from his Almagest (I.26), Ptolemy summarized some basic astronomical principles using geometrical

terms, making it clear that the most important geometry of interest to astronomers was that of the

sphere and the circle.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

The heaven is spherical in shape, and moves as a sphere; the earth too is sensibly spherical

in shape, when taken as a whole; in position it lies in the middle of the heavens very much

3The name Almagest was not the title given to the work by its author. In Ptolemy’s day, it had a much more prosaic
title, The Mathematical Collection, but as it was much studied by astronomers in subsequent centuries, it became known
more simply as The Great Collection. Centuries later, Arabic scholars translated it into their own language (with this
same title) as Kitāb al-majist̄ı, and even later, European scholars produced Latin translations, transliterating the title
as Almagestus. Eventually, and finally, it was Anglicized as Almagest.

4It is instructive to consider how it is that Ptolemy’s work survives today while Hipparchus’ does not. This is in
no small part due to the spectacular success of the reputation of the Almagest among astronomers who came after
Ptolemy. In an age before the invention of printing, Ptolemy’s work was copied by hand, again and again, while the
works of earlier scholars were eclipsed or superseded by Ptolemy’s and were set aside. Eventually, the older manuscripts
were forgotten, then decayed and were lost, except for those mentions in other books by those who had read them in
ages past. Furthermore, Ptolemy had the good fortune to have his works preserved at the famous Museum Library in
Alexandria, the modern-day source of a vast amount of scientific literature of the ancient world.

5We must mention in this regard Euclid (ca. 300 BCE) and his Elements, the most well-known compendium of such
theories in Greek geometry. It is arguably the most influential piece of mathematical writing in all of history. We find
many citations to the Elements made by Ptolemy elsewhere in the Almagest. In fact, in the next unit of this series, we
will focus on reading a section of the Almagest that appears after the one we will read below. There we will see how
Ptolemy depends heavily on geometrical foundations drawn from the Elements.

6This notation indicates that the passage comes from Section 2 of Book I of the Almagest.
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like its centre; in size and distance it has the ratio of a point to the sphere of the fixed stars;

and it has no motion from place to place.

. . . [T]he ancients . . . saw that the sun, moon, and other stars were carried from east to west

along circles which were always parallel to each other, that they began to rise up from below

the earth itself, as it were, gradually got up high, then kept on going round in similar fashion

and getting lower, until, falling to earth, so to speak, they vanished completely, then, after

remaining invisible for some time, again rose afresh and set; and [they saw] that the periods

of these [motions], and also the places of rising and setting, were, on the whole, fixed and

the same. . . .

No other hypothesis but [the sphericity of the heavens] can explain how sundial constructions

produce correct results; furthermore, the motion of the heavenly bodies is the most unham-

pered and free of all motions, and freest motion belongs among plane figures to the circle

and among solid shapes to the sphere. . . .

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Task 1 (a) What is Ptolemy generally trying to convince us of in the excerpt above?

(b) Cite as many pieces of evidence as you can from Ptolemy in support of his claim. Then

add one or more of your own justifications, either for or against his claim. (Be sure to

clearly distinguish your evidentiary points from those that Ptolemy made.) From what

you know about the history of science, do you think it likely that Ptolemy would agree

with each of your confirmations or rebuttals? Why, or why not?

(c) How convincing overall do you find the argument that he has made here? (It was wildly

successful in convincing many in the ancient world, as the Almagest was treated as the

authority in these matters for centuries following its writing.)

At the beginning of this excerpt, Ptolemy described the vastness of the heavens by stating that

“in size and distance [the Earth] has the ratio of a point to the sphere of the fixed stars.” That is,

wherever one was located on the surface of the Earth, it made sense to consider yourself at the

center of the immense celestial sphere. In this way, he also made clear his cosmological view: unlike

Hipparchus, who thought that the Sun was at the center of the universe with the Earth and planets

circling it, Ptolemy believed not only that the Earth was at the center, but that its location was

fixed: “it has no motion from place to place.”7

At the core of the Greek understanding of the motion of the heavens, then, is knowledge of the

geometry of the sphere and of its two-dimensional counterpart, the circle, which describes the paths

of the heavenly bodies around the celestial sphere. The application of this geometry to handling

7Indeed, except for the rare occurrence of an earthquake, humans perceive no movement of the Earth; the sky
actually does appear to move around the observer! Modern science only succeeded in convincing the general public of
the view that the Earth moves around the Sun after centuries of argument and rhetorical harangue, largely through the
work of Copernicus and Galileo in the sixteenth and seventeenth centuries. Later, in the twentieth century, astronomers
realized that even this view was incomplete: the galaxies that make up the universe are generally receding from each
other over time. That is, no matter where you are in the universe, distances to the galaxies around you are expanding
with time. So in some real sense, the universe has no center at all!
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problems in astronomy is the real origin of what would eventually become trigonometry. We will

explore a little of this geometry in the following two tasks, before taking a look (in the next section

of this project) at how Hipparchus made use of it.

Task 2 On a circle of unit radius (OA = 1), mark off a point B so that AB = 1. If we join O to B, we

will then have constructed triangle AOB.

O A

B

(a) Why is it that triangle AOB is equilateral?

(b) What is the measure of ∠AOB? Explain how you know.

(c) Mark off the point C on the circle so that BC = 1, with C on the opposite side of B

than A. By the same reasoning as in parts (a) and (b), triangle BOC is equilateral. If

we continue to mark points D,E, . . . , moving counterclockwise around the circle, spaced

one unit apart, how many such points will fit before the next point takes us beyond our

original starting point at A? Explain how you know what this number is.

(d) What kind of regular polygon ABCD . . . A is thereby inscribed in the circle by connecting

the consecutive points we have identified in the steps above? (A polygon is called regular

if all its sides have equal measure.)

Task 3 We continue the exploration begun in the previous Task.

O A

B

A′

P

(a) Let the line segment OA′ bisect ∠AOB and cut the segment AB at the point P . Then

triangle AOA′ is isosceles. Use this to determine the measures of all the angles in triangles

AOA′, AOP , and APA′.

(b) Use your answers in part (a) and the Pythagorean Theorem to find the lengths of the

sides of triangles AOP and APA′, and in particular, the length of AA′.

(c) The segment AA′ is one side of a regular polygon which can be inscribed in the circle.

How many sides does this polygon have?
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3 The Table of Chords

Greek geometers had developed techniques to determine the exact lengths of the sides of certain

regular polygons, such as the one you constructed in Task 3, but not just any such polygon: for

instance, the length of the regular heptagon (having seven sides) could only be approximated. Given

a circle with center point O and any two radii, OA and OA′, these radii will bound the central

angle ∠AOA′, corresponding to the arc from A to A′. The line segment AA′ is called the chord

corresponding to the arc AA′
_

or the angle ∠AOA′.

It was recognized early on that knowledge of the lengths of these chords would be extremely

useful for solving astronomical problems. Thus, it is not surprising to learn that Hipparchus was

reported to have prepared a table of arcs and their corresponding chords for use by astronomers (and

astrologers). Unfortunately, no copy of this work of Hipparchus survives today.8 However, a number

of scholars in recent years have proposed a likely reconstruction of his table, which we present below.9

Figure 1: Hipparchus’ Table of Chords (Reconstruction)

Arcs Chords Arcs Chords

[7, 30] [7, 30] [97, 30] [86, 9]

[15, 0] [14, 57] [105, 0] [90, 55]

[22, 30] [22, 21] [112, 30] [95, 17]

[30, 0] [29, 40] [120, 0] [99, 14]

[37, 30] [36, 50] [127, 30] [102, 46]

[45, 0] [43, 51] [135, 0] [105, 52]

[52, 30] [50, 41] [142, 30] [108, 31]

[60, 0] [57, 18] [150, 0] [110, 41]

[67, 30] [63, 40] [157, 30] [112, 23]

[75, 0] [69, 46] [165, 0] [113, 37]

[82, 30] [75, 33] [172, 30] [114, 21]

[90, 0] [81, 2] [180, 0] [114, 35]

Task 4 Write at least three observations and at least three questions you have about how to read this

as a Table of Chords.

8We have independent reports that Hipparchus had indeed prepared such a table, one from Vettius Valens (120–
ca. 175 CE), a contemporary of Ptolemy and author of a respected astrological work, and another from Theon of
Alexandria (ca. 335–405 CE), in his Commentary on the Almagest.

9For a deeper discussion of how this table was reconstructed, and a “convincing, but circumstantial” rationale for
it, see (Van Brummelen, 2009, 41-46). Since this table is not taken from a historical documented source, we do not
present it here in the sans-serif font we reserve for such texts.
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The Table is the supposed production of a Greek astronomer working within the tradition of

Babylonian science, so we should interpret the numbers in the table as being represented in sexages-

imal (that is, base 60) numeration. In other words, the table entries are numerals which you may

find to be of an unfamiliar type. If you have seen sexagesimal numerals before, subsection 3.1 below

should remind you how they work. In subsection 3.2, we will then return to our exploration of the

other features of Hipparchus’ Table.

3.1 Sexagesimal Numeration

Our familiar decimal (or base 10) numeration makes use of the ten digits 0, 1, 2, . . . , 9, to represent

any number, the positions of a particular digit within a specific numeral indicating what size of unit

it is meant to represent: ones, tens, hundreds, and so on, with larger powers of 10 off to the left

to count larger and larger groupings of units. Similarly, tenths, hundredths, thousandths, and even

smaller fractions of units (the negative powers of 10) appear after a decimal point to the right of the

units digit to measure finer and finer parts of units. For instance, the number we call 23
4 is written

in decimal form as 2.75 because the 2 represents two units, the 7 seven tenths of these units, and the

5 five additional hundredths (that is, tenths of tenths): 2.75 = 2 units + 7 tenths + 5 hundredths

= 2 · 100 + 7 · 10−1 + 5 · 10−2 = 2 + 7
10 + 5

100 = 2 75
100 = 23

4 . In different positions, even the same set

of digits would represent a different number: 7.52 = 7 + 5
10 + 2

100 , and 75.2 = 7 · 10 + 5 + 2
10 .

In the same way, sexagesimal numeration makes use of 60 distinct digits, representing the numbers

0, 1, 2, . . . , 59. Each digit’s position within a numeral identifies the power of 60 associated to that

digit. We will separate sexagesimal digits by commas, and, instead of a “sexagesimal point”, we will

signify the break between units and sixtieths with a semicolon (;). Thus, 100, which is 1 sixty + 40

units, is represented in sexagesimal as [1, 40]; likewise, 300 is represented as [5, 0] and 23
4 = [2; 45].

Note that this last numeral requires only two sexagesimal digits, since 45 is a single sexagesimal

digit.

Task 5 Represent the three (decimal) numbers 78, 4.0075, and 4800 in sexagesimal numeration.

Now that we have the means to read the numbers in Hipparchus’ Table, let’s look more closely

at its structure. You may want to revisit your answers to Task 4 to see if you can explain in this

new light some of the patterns in the Table that you identified there. Do these patterns appear to

be intentional in the design of the Table? The rest of this section will be devoted to an investigation

of what this Table means and why it was of use to Greek mathematicians and astronomers.

3.2 Measuring the Arcs

We begin by making a subtle point about the geometry of central angles in a circle and their

corresponding arcs: given a circle with center O and two points A and B on the circumference, the

two radii OA and OB determine an angle ∠AOB and an arc AB
_

, which by longstanding convention

we read as opening in the counterclockwise direction, the angle opening from OA to OB, and the arc

from A to B along the circle. In modern mathematics, when we say that the measure of the angle

∠AOB is 57◦, we are measuring the amount of rotation about the center O undergone by turning

OA into OB. But the ancients used this same system of units to measure instead the length of the

curved arc AB
_

along the circle from A to B in the same direction.
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O A

B

With this in mind, the simple observation that the entries in Hipparchus’ Table end at the telling

value [180, 0] appears to indicate that it is likely meant to represent an arc of 180◦ (half the full

circle).10 This suggests strongly that the values in the Arcs column of the Table of Chords are meant

to measure arcs along the circle, or equivalently (as we have just observed), angles made at the center

of the circle. We should also expect the column labeled Chords to carry the values of the lengths of

the chords that span the corresponding arcs; these too are measurements in sexagesimal form. We

will adopt a simple notation for this, referring to the Chord for a given Arc with the notation Crd:

for instance, we see from the table that Crd [37, 30] = [36, 50].

Task 6 Use the Table to identify. . .

(a) the value of Crd [90, 0]

(b) the value of Crd [112, 30]

(c) the Arc whose Chord is [43, 51]

(d) the Arc whose Chord is [108, 31]

For the remainder of this subsection, we will focus on the structure of the Arcs column of the

table; in the next subsection, we’ll investigate what’s going on in the Chords column.

If the Arcs are being measured in units of degrees, then we should expect all the commas in

these entries to properly be semicolons: [7, 30], the first Arc entry in the table, is a sexagesimal

representation of the number 7 ·60 + 30 = 450, not 71
2 ; that number would be written as [7; 30]. But

perhaps they were not meant to be interpreted in units of degrees, but in units of arcminutes, that

is, in units of sixtieths of a degree.

Since the Babylonian astronomers who pioneered the measurement of circular arcs (or of central

angles that determine those arcs) worked with a sexagesimal numeration system, their chief mea-

surement unit for arcs, the degree, was naturally subdivided into sixtieths. Later European scholars

would identify these as the first smaller parts of the degree, or, writing in Latin, partes primae

minutiae—in English, minute. For the same reason, astronomers subdivided the temporal hour into

sixtieths, and called these minutes as well. Then, to discriminate minutes of time from minutes of

arc, we call the latter arcminutes. To further subdivide arcs (or time), one would have to distinguish

sixtieths of sixtieths of a degree (or of an hour), requiring the second smaller parts of the degree (or

hour), in Latin partes primae secondae, or seconds (or arcseconds) in English. Under this scheme, [7,

10Because there is no actual document authored by Hipparchus to consult here, there is no way of knowing if, much
less how, the entries in the Arcs column ending in a 0 digit actually displayed this 0 as a zero symbol. For instance,
the entry [180, 0] might have been entered as [180, ]!
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30] would be interpreted as 7 · 60 + 30 = 450 arcminutes, which is the same as 71
2

◦
. In the end, then,

it doesn’t much matter whether there was an unintended missing semicolon in the table entries: [7,

30] arcminutes measures the very same arc that also measures [7; 30] degrees.11

Task 7 Use the Table to express the Arcs in Task 6(c, d) in units of degrees.

You may also have noticed a simple pattern in the entries of the Arcs column: the first entry [7,

30] represents an arc of 71
2

◦
, the second represents 15◦, the third 221

2

◦
, and so on. Thus, all entries

are successive multiples of the first one. What’s so special about 71
2

◦
? The next four Tasks are

designed to help you answer this question.

Task 8 (a) The full 360◦ angle at the center O of a circle can be divided equally into six angles

by radii drawn from O out to the circumference. Let A,B,C,D,E, F be the points on

the circumference where these six radii strike the circle itself. Connecting the segments

AB,BC,CD,DE,EF , FA produces a regular hexagon inscribed in the circle. These con-

gruent segments can each be understood as the chords of the corresponding congruent

arcs AB
_

, BC
_

, CD
_

, DE
_

, EF
_

, FA
_

. What is the common measure of these arcs? And does

Hipparchus’ Table list this arc and its corresponding chord? (You might want to compare

your work here with what you did for Task 2.)

(b) Now skip the points B,D, and F , and connect the other points of the regular hexagon to

produce the equilateral triangle ACE, inscribed in the same circle. What is the common

measure of the arcs AC
_

, CE
_

, EA
_

? Does Hipparchus’ Table list the value of this common

arc and the corresponding common chords, AC,CE,EA?

Task 9 Divide the full 360◦ angle at the center O of a circle into five equal parts by radii drawn from

O out to the circumference. Let A,B,C,D,E be the points on the circumference where these

five radii strike the circle. Connecting the segments AB,BC,CD,DE,EA produces a regular

pentagon inscribed in the circle. These congruent segments are chords of the corresponding

congruent arcs AB
_

, BC
_

, CD
_

, DE
_

, EA
_

. What is the common measure of these arcs? Does it

appear as an Arc in Hipparchus’ Table?

Task 10 (a) Divide the full 360◦ angle at the center O of a circle into four equal parts by radii drawn

from O out to the circumference. Let A,B,C,D be the points on the circumference where

these four radii strike the circle. Connecting the segments AB,BC,CD,DA produces an

inscribed square. These congruent segments are chords of the corresponding congruent

arcs AB
_

, BC
_

, CD
_

, DA
_

. What is the common measure of these arcs? Does it appear as

an Arc in Hipparchus’ Table?

11Remember, the entire table is a modern “educated guess” of an object for whose existence we have only some
reasonable evidence!

Daniel E. Otero, ‘Teaching and Learning the Trigonometric Functions through Their Origins’
MAA Convergence (July 2020)

8



(b) Now halve the arcs between the vertices of the square to get the points A′, B′, C ′, D′,

so that A′ is the midpoint of AB
_

, B′ is the midpoint of BC
_

, etc. If we now connect

consecutive points around the circle, we produce an inscribed regular octagon. Does the

measure of the arc AA′
_

appear in Hipparchus’ table?

(c) If this halving process were repeated once more, how many sides would the resulting

inscribed regular polygon have? And does the measure of the arc between consecutive

vertices of this polygon appear in Hipparchus’ Table?

Task 11 (a) Suppose that ABC . . . A is a regular polygon with n sides inscribed in a circle. For what

values of n is the arc AB
_

an entry in Hipparchus’ Table? Use your work on Tasks 8–10

to help answer this question.

(b) Of course, every value of n you found in part (a) must be greater than 2. But what is the

largest value of n whose arc can be found in the Table? Let’s call that value N . Identify

a property shared by all the values of n you found in (a) that relates them to N (besides

the obvious one that n < N)?

(c) What is the measure of the arc AB
_

in this regular N -gon, as it appears in Hipparchus’

Table? What is its measure in degrees? Where A,B,C,D, . . . are consecutive vertices of

the N -gon, what are the measures of the arcs AC
_

, AD
_

, etc., in degrees?

(d) Based on your answers above, how is the column of Arcs in Hipparchus’ Table organized?

3.3 Measuring the Chords

Examining the Chords column for similar patterns, you may also have discovered that these numbers

are roughly equal to their Arcs near the beginning of the table but appear to grow less quickly as

the size of the Arcs increases. How can we explain this phenomenon?

Our first clue is to consider the first table entry: it reports that the Chord corresponding to an

Arc of 71
2 degrees is also [7; 30] = 71

2 , i.e., Crd[7; 30] = [7; 30]. But if the length of the arc of a circle

is a distance, we could imagine straightening this arc’s length to obtain a line segment of nearly the

same measure. That is, we could measure the chord in the same units as the arc. The diagram below

shows that the arc and the chord are indeed roughly equal, as they are hard to distinguish when the

angle is small, just as Hipparchus’ Table confirms.

71
2

◦

This gives evidence that the Chord entries were interpreted as lengths in the same units of arcminutes

as were used to measure the lengths of the Arcs along the circle.

Finally, you may have observed that the later entries in both columns of Hipparchus’ table are

not properly rendered in true sexagesimal form. For instance, the final entry of [180, 0] arcminutes
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in the Arcs column ought to be written in sexagesimal as [3, 0, 0]: the number 180 is not a proper

sexagesimal digit, as it is greater than or equal to 60. Ptolemy also did not use a strictly sexagesimal

numeration in the table of chords he published in the Almagest I.11 (Toomer, 1998).12 For both

Hipparchus and Ptolemy, as for most other Greek astronomers, Arcs were consistently measured in

units of degrees, but sexagesimal notation was used only to reference fractions of a degree. Quantities

that were one degree or larger were recorded in a base-10 system (Pedersen, 2011, pp. 49-52). This

is what we are seeing in this version of Hipparchus’ Table. From the time of the Greeks until today,

astronomers in the Western world continued to make use of this “hybrid” sexagesimal number system

of degrees/minutes/seconds whenever they measured arcs or angles.

Task 12 Let’s see if we can translate entries of Hipparchus’ Table into a more modern form, with angles

measured in degrees and chord lengths in units of arcminutes.

(a) Hipparchus’ table shows that Crd [15, 0] = [14, 57] arcminutes. Convert the Arc measure

to degrees, and the measure of its Chord into a decimal number of arcminutes (rounding

to four places).

(b) The table also shows that Crd [37, 30] = [36, 50] arcminutes. Convert this Arc measure to

degrees, and the measure of its Chord into a decimal number of arcminutes (rounding to

four places).

Task 13 (a) Recall the formula you learned in school that relates the circumference C of a circle and

its radius r. (If you’ve forgotten it, look it up.) Given that the circle contains 360◦, how

many minutes of arc measure the entire circumference of the circle? According to the

formula, how long is the radius of the circle in arcminutes?

(b) From Task 2(a), we conclude that Crd [60, 0] should be equal to the radius of the under-

lying circle. Show how Hipparchus’ table verifies this.

(c) What then is the length of the diameter of the circle? How does this relate to the tabulated

Chord length for an Arc of measure 180◦?

Task 14 In Hipparchus’ table, Arcs step up in units of 71
2

◦
. Arcs greater than 180◦ would not need to

be considered, since their chord values would simply repeat ones already found in the table.

Verify this by drawing a picture displaying a circle with central angle whose corresponding arc

on the circle has measure 1871
2

◦
, the next entry that would have appeared in the table if it were

to continue past 180◦. What entry in the table already gives the corresponding chord value?

According to the table, what is the measure of the Chord for Arc 3371
2

◦
?

12As Hipparchus did, Ptolemy’s table of chords listed arcs up to 180◦, but it was far more extensive: in fact, it
listed 360 entries, finding the chord for every arc that was a multiple of 1

2

◦
, together with an aid for getting very close

approximations for the chords of any arc measure in between!
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Task 15 Translate at least the first eight entries of Hipparchus’ Table of Chords from sexagesimal into

decimal numbers, using degrees and minutes to measure the Arcs but only arcminutes for the

Chords. For instance, the first pair of entries would give an Arc measure of 7◦30′ and a Chord

measure in arcminutes of 7 · 60 + 30 = 450′. Similarly, the second pair of table entries illustrate

that Crd 15◦0′ = 14 · 60 + 57 = 897′.

4 Conclusion

We have learned that, because the Greeks saw the circle and sphere as appropriate geometric models

for the paths of motion of the heavenly bodies—and for the heavens themselves, the geometry of

the circle was central13 to their astronomical theories. The creation of tables of chords, like the

reconstructed one of Hipparchus which was explored in this project, allowed them to relate the linear

distances between points on a circle (or sphere) to the lengths of their arcs, or the measures of the

angles they spanned at the center. In the next unit of this series of projects, we will examine in

detail how a table of chords was used to solve a practical astronomical problem, the telling of time

by the measure of the sun’s shadows.

13Pun intended!
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Notes to Instructors

This project is the second in a collection of six curricular units drawn from a Primary Source Project

(PSP) titled A Genetic Context for Understanding the Trigonometric Functions. The project is

designed to serve students as an introduction to the study of trigonometry by providing a context for

the basic ideas contained in the subject and hinting at its long history and ancient pedigree among

the mathematical sciences. Each of the individual units in that PSP looks at one of the following

specific aspects of the development of the mathematical science of trigonometry:

• the emergence of sexagesimal numeration in ancient Babylonian culture, developed in the

service of a nascent science of astronomy;

• a modern reconstruction (as laid out in (Van Brummelen, 2009)) of a lost table of chords known

to have been compiled by the Greek mathematician-astronomer Hipparchus of Rhodes (second

century, BCE);

• a brief selection from Claudius Ptolemy’s Almagest (second century, CE) (Toomer, 1998), in

which the author (Ptolemy) shows how a table of chords can be used to monitor the motion of

the Sun in the daytime sky for the purpose of telling the time of day;

• a few lines of Vedic verse by the Hindu scholar Varāhamihira (sixth century, CE) (Neugebauer

and Pingree, 1970/1972), containing the “recipe” for a table of sines as well as some of the

methods used for its construction;

• passages from The Exhaustive Treatise on Shadows (Kennedy, 1976), written in Arabic in the

year 1021 by Abū Rayh. ān Muh.ammad ibn Ah. mad al-B̄ırūn̄ı, which include precursors to the

modern trigonometric tangent, cotangent, secant, and cosecant;

• excerpts from Regiomontanus’ On Triangles (1464) (Hughes, 1967), the first systematic work

on trigonometry published in the West.

This collection of units is not meant to substitute for a full course in trigonometry, as many stan-

dard topics are not treated here. Rather, it is the author’s intent to show students that trigonometry

is a subject worthy of study by virtue of the compelling importance of the problems it was invented

to address in basic astronomy in the ancient world. Each unit may be incorporated, either indi-

vidually or in various combinations, into a standard course in College Algebra with Trigonometry,

a stand-alone Trigonometry course, or a Precalculus course. These lessons have also been used in

courses on the history of mathematics and as part of a capstone experience for pre-service secondary

mathematics teachers.

In this unit, students are introduced to the basic elements of the geometry of the circle and the

measure of its arcs, central angles, and chords, whose interrelationships formed the foundation for

the early development of trigonometry as a mathematical tool for Greek astronomy. The project

opens with a reading of a brief excerpt from Claudius Ptolemy’s Almagest (second century CE) that

provides scientific and philosophical context for why the geometry of the circle was so important to

astronomers. This is followed by an investigation of a (modern reconstruction of a) table of chords

attributed to Hipparchus of Rhodes (second century, BCE). This work is intended to give students

reasons for why and how degree measure works, as well as gently introducing them, through an

examination of a table of chords, to the study of trigonometrical functions.
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Student Prerequisites

Nearly nothing in the way of special prerequisites is required of students for this particular unit

beyond what a typical high school student knows about basic plane geometry. But instructors

interested in implementing the current project in their classroom may want to consider also using

the first unit of the collection, Babylonian Astronomy and Sexagesimal Numeration. This can be

most effective if the instructor wishes students to work through these materials at times separated by

more than just a few days, since the units have been pieced apart here to maximize their independent

utility; otherwise, one could also consider making use of the full PSP described above.

The central features of most of the units in the full PSP are the primary source texts and the

sequence of tasks that accompany them. In this unit, however, the single primary source text offers

mainly context for the mathematical work at hand, which centers on a modern reconstruction of a

lost work, Hipparchus’ Table of Chords. The goal of the project is to connect the geometry of the

circle with the measurement of its chords as propounded by Greeks like Hipparchus and Claudius

Ptolemy. This work continued the advancement of mathematical astronomy from the Old Babylonian

era, whose legacy is still felt today in the way we measure angles, arcs, and time.

Instructors who wish to expose students to more experience with sexagesimal numeration are

also encouraged to consider the PSP Babylonian Numeration by Dominic Klyve, which is available

for free download at https://blogs.ursinus.edu/triumphs/.

Suggestions for Classroom Implementation

This particular unit is meant to be completed in two to three 50-minute (or two 75-minute) classroom

periods, plus time in advance for students to do some initial reading and time afterwards for them to

write up their solutions to the tasks. It should be emphasized that student written work should be

far more explicit and detailed in its production than the oral communication in which they engage

in the classroom, communication that is often accompanied by the recording of rather telegraphic

notes.

Sample Implementation Schedule (based on two 50-minute class periods)

Students should read through the end of section 3.1 before the first class begins. This will expose

them to the single included source text and the associated commentary, the Table of Chords, and

the first five Tasks. Assign students to also work Tasks 1, 4, and 5 beforehand.

The first 5 minutes of the first period can be devoted to comparing students’ responses to Task

1(a) and (c). Now, students are likely to be mystified by Tasks 2 and 3, so the next 20 minutes or so

should be set aside to assist them, preferably in groups of 4–6, as they work through the geometric

details of the procedures laid out there. They will need to have on hand blank paper, pencils for

drawing, straightedges (rulers), and compasses. Compasses can be challenging to use effectively, so

it may be best to have at least two students per group working to construct the diagrams required

for the Task to allow their drawings to be compared and improved upon. Still, artistic perfection is

not the ultimate goal here, so you might ask them to be somewhat forgiving of their drawings.

Next, spend about 10 minutes publicly identifying students’ responses to Task 4. There are

likely to be common responses. As a focused investigation of the structure of the Table of Chords is

the aim of the project, these responses should help direct the students’ attention for the remainder

of their work on it. Give another 10 minutes to checking that the students get the mechanics of
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converting decimal numbers into sexagesimal, and the reverse (Task 5). Instructors may find that

many handheld calculators have a tool that converts radian measures to degrees/minutes/seconds,

a useful tool for conversion of decimal numbers into sexagesimal form. But one should also be aware

that it may be too tempting for students to employ them as a means of avoiding the conceptual work

of understanding the conversion procedure.

During the rest of the first period, I recommend that the class read (either aloud in common,

or alone silently) the section 3.2 commentary. They can then work on parts of the straightforward

Tasks 6 and 7. What isn’t completed in class can be left as homework, if necessary. Indeed, the

work of all seven of these Tasks should be assigned as homework for students to formally write up

and submit later. In addition, have students prepare solutions to Tasks 8–10 for discussion in the

next period. (Note that Task 9 may be omitted, if needed.)

The second class period should open with students’ questions, especially regarding their work

on Tasks 8 and 10. It may be useful to summarize this discussion by asking students this question:

“Which inscribed regular n-gons have associated arcs that appear in Hipparchus’ table?” The goal is

to lead students to speculate about the table’s organization. A copy of Hipparchus’ Table of Chords

has been included as the last page of these Notes to Instructors should you wish to distribute copies

for students to use during this period as they work to figure out how to read it and what it means.

Next, students can work in groups on Task 11. I suggest planning 30 minutes for this. The rest

of the period is for students to work on at least one part of Task 12 and all of Task 13. While Task

14 may be considered optional, Task 15 should certainly be assigned for homework; it is a good

exercise to bring the project to a close, as it asks the student to translate the Table of Chords into

a more modern form. (You may want to devote a few minutes at the start of the next meeting to

tackle questions from them about this.) It is recommended that students write up formal solutions

to whichever of Tasks 8–15 is assigned as a final homework assignment.

LATEXcode of this unit is available from the author by request to facilitate preparation of ‘in-

class task sheets’ based on tasks included in the project. The project itself can also be modified by

instructors as desired to better suit their goals for the course.

Recommendations for Further Reading

Instructors who want to learn more about the history of trigonometry are recommended to consult

Glen van Brummelen’s masterful The Mathematics of the Heavens and the Earth: The early history

of trigonometry (Van Brummelen, 2009), from which much of this work took inspiration.
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Hipparchus’ Table of Chords (Reconstruction)

Arcs Chords Arcs Chords

[7, 30] [7, 30] [97, 30] [86, 9]

[15, 0] [14, 57] [105, 0] [90, 55]

[22, 30] [22, 21] [112, 30] [95, 17]

[30, 0] [29, 40] [120, 0] [99, 14]

[37, 30] [36, 50] [127, 30] [102, 46]

[45, 0] [43, 51] [135, 0] [105, 52]

[52, 30] [50, 41] [142, 30] [108, 31]

[60, 0] [57, 18] [150, 0] [110, 41]

[67, 30] [63, 40] [157, 30] [112, 23]

[75, 0] [69, 46] [165, 0] [113, 37]

[82, 30] [75, 33] [172, 30] [114, 21]

[90, 0] [81, 2] [180, 0] [114, 35]
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