2nd Asian Pacific Mathematical Olympiad

March, 1990

1. In $\triangle ABC$, let D, E, F be the midpoints of BC, AC, AB respectively and let G be the centroid of the triangle.

For each value of $\angle BAC$, how many non-similar triangles are there in which AEGF is a cyclic quadrilateral?

2. Let a_1, a_2, \ldots, a_n be positive real numbers, and let S_k be the sum of products of a_1, a_2, \ldots, a_n taken k at a time.

Show that

$$S_k S_{n-k} \ge {n \choose k}^2 a_1 a_2 \dots a_n$$
, for $k = 1, 2, \dots, n-1$

- 3. Consider all the triangles ABC which have a fixed base AB and whose altitude from C is a constant h. For which of these triangles is the product of its altitudes a maximum?
- 4. A set of 1990 persons is divided into non-intersecting subsets in such a way that
 - (a) no one in a subset knows all the others in the subset;
 - (b) among any three persons in a subset, there are always at least two who do not know each other; and
 - (c) for any two persons in a subset who do not know each other, there is exactly one person in the same subset knowing both of them.
 - (i) Prove that within each subset, every person has the same number of acquaintances.
 - (ii) Determine the maximum possible number of subsets.

Note: It is understood that if a person A knows person B, then person B will know person A; an acquaintance is someone who is known. Every person is assumed to know one's self.

5. Show that for every integer $n \ge 6$, there exists a convex hexagon which can be dissected into exactly n congruent triangles.