$11^{\text {th }}$ Asian Pacific Mathematical Olympiad

March, 1999

1. Find the smallest positive integer n with the following property: there does not exist an arithmetic progression of 1999 real numbers containing exactly n integers.
2. Let a_{1}, a_{2}, \ldots be a sequence of real numbers satisfying $a_{i+j} \leq a_{i}+a_{j}$ for all $i, j=1,2, \ldots$. Prove that

$$
a_{1}+\frac{a_{2}}{2}+\frac{a_{3}}{3}+\cdots+\frac{a_{n}}{n} \geq a_{n}
$$

for each positive integer n.
3. Let Γ_{1} and Γ_{2} be two circles intersecting at P and Q. The common tangent, closer to P, of Γ_{1} and Γ_{2} touches Γ_{1} at A and Γ_{2} at B. The tangent of Γ_{1} at P meets Γ_{2} at C, which is different from P, and the extension of $A P$ meets $B C$ at R. Prove that the circumcircle of triangle $P Q R$ is tangent to $B P$ and $B R$.
4. Determine all pairs (a, b) of integers with the property that the numbers $a^{2}+4 b$ and $b^{2}+4 a$ are both perfect squares.
5. Let S be a set of $2 n+1$ points in the plane such that no three are collinear and no four concyclic. A circle will be called good if it has 3 points of S on its circumference, $n-1$ points in its interior and $n-1$ points in its exterior. Prove that the number of good circles has the same parity as n.

