$28^{\text {th }}$ International Mathematical Olympiad
 Havana, Cuba

 Day I

 Day I
 July 10, 1987

1. Let $p_{n}(k)$ be the number of permutations of the set $\{1, \ldots, n\}, n \geq 1$, which have exactly k fixed points. Prove that

$$
\sum_{k=0}^{n} k \cdot p_{n}(k)=n!.
$$

(Remark: A permutation f of a set S is a one-to-one mapping of S onto itself. An element i in S is called a fixed point of the permutation f if $f(i)=i$.)
2. In an acute-angled triangle $A B C$ the interior bisector of the angle A intersects $B C$ at L and intersects the circumcircle of $A B C$ again at N. From point L perpendiculars are drawn to $A B$ and $A C$, the feet of these perpendiculars being K and M respectively. Prove that the quadrilateral $A K N M$ and the triangle $A B C$ have equal areas.
3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$. Prove that for every integer $k \geq 2$ there are integers $a_{1}, a_{2}, \ldots, a_{n}$, not all 0 , such that $\left|a_{i}\right| \leq k-1$ for all i and

$$
\left|a_{1} x_{1}+a_{1} x_{2}+\cdots+a_{n} x_{n}\right| \leq \frac{(k-1) \sqrt{n}}{k^{n}-1}
$$

$28^{\text {th }}$ International Mathematical Olympiad
 Havana, Cuba

Day II
July 11, 1987
4. Prove that there is no function f from the set of non-negative integers into itself such that $f(f(n))=n+1987$ for every n.
5. Let n be an integer greater than or equal to 3 . Prove that there is a set of n points in the plane such that the distance between any two points is irrational and each set of three points determines a non-degenerate triangle with rational area.
6. Let n be an integer greater than or equal to 2 . Prove that if $k^{2}+k+n$ is prime for all integers k such that $0 \leq k \leq \sqrt{n / 3}$, then $k^{2}+k+n$ is prime for all integers k such that $0 \leq k \leq n-2$.

