$29^{\text {th }}$ International Mathematical Olympiad
 Canberra, Australia

Day I

1. Consider two coplanar circles of radii R and $r(R>r)$ with the same center. Let P be a fixed point on the smaller circle and B a variable point on the larger circle. The line $B P$ meets the larger circle again at C. The perpendicular l to $B P$ at P meets the smaller circle again at A. (If l is tangent to the circle at P then $A=P$.)
(i) Find the set of values of $B C^{2}+C A^{2}+A B^{2}$.
(ii) Find the locus of the midpoint of $B C$.
2. Let n be a positive integer and let $A_{1}, A_{2}, \ldots, A_{2 n+1}$ be subsets of a set B. Suppose that
(a) Each A_{i} has exactly $2 n$ elements,
(b) Each $A_{i} \cap A_{j}(1 \leq i<j \leq 2 n+1)$ contains exactly one element, and
(c) Every element of B belongs to at least two of the A_{i}.

For which values of n can one assign to every element of B one of the numbers 0 and 1 in such a way that A_{i} has 0 assigned to exactly n of its elements?
3. A function f is defined on the positive integers by

$$
\begin{aligned}
f(1) & =1, \quad f(3)=3, \\
f(2 n) & =f(n), \\
f(4 n+1) & =2 f(2 n+1)-f(n), \\
f(4 n+3) & =3 f(2 n+1)-2 f(n),
\end{aligned}
$$

for all positive integers n.
Determine the number of positive integers n, less than or equal to 1988 , for which $f(n)=n$.

$29^{\text {th }}$ International Mathematical Olympiad
 Canberra, Australia
 Day II

4. Show that set of real numbers x which satisfy the inequality

$$
\sum_{k=1}^{70} \frac{k}{x-k} \geq \frac{5}{4}
$$

is a union of disjoint intervals, the sum of whose lengths is 1988.
5. $A B C$ is a triangle right-angled at A, and D is the foot of the altitude from A. The straight line joining the incenters of the triangles $A B D, A C D$ intersects the sides $A B, A C$ at the points K, L respectively. S and T denote the areas of the triangles $A B C$ and $A K L$ respectively. Show that $S \geq 2 T$.
6. Let a and b be positive integers such that $a b+1$ divides $a^{2}+b^{2}$. Show that

$$
\frac{a^{2}+b^{2}}{a b+1}
$$

is the square of an integer.

