$30^{\text {th }}$ International Mathematical Olympiad Braunschweig, Germany
 Day I

1. Prove that the set $\{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $A_{i}(i=1,2, \ldots, 117)$ such that:
(i) Each A_{i} contains 17 elements;
(ii) The sum of all the elements in each A_{i} is the same.
2. In an acute-angled triangle $A B C$ the internal bisector of angle A meets the circumcircle of the triangle again at A_{1}. Points B_{1} and C_{1} are defined similarly. Let A_{0} be the point of intersection of the line $A A_{1}$ with the external bisectors of angles B and C. Points B_{0} and C_{0} are defined similarly. Prove that:
(i) The area of the triangle $A_{0} B_{0} C_{0}$ is twice the area of the hexagon $A C_{1} B A_{1} C B_{1}$.
(ii) The area of the triangle $A_{0} B_{0} C_{0}$ is at least four times the area of the triangle $A B C$.
3. Let n and k be positive integers and let S be a set of n points in the plane such that
(i) No three points of S are collinear, and
(ii) For any point P of S there are at least k points of S equidistant from P.

Prove that:

$$
k<\frac{1}{2}+\sqrt{2 n} .
$$

$30^{\text {th }}$ International Mathematical Olympiad
 Braunschweig, Germany

Day II
4. Let $A B C D$ be a convex quadrilateral such that the sides $A B, A D, B C$ satisfy $A B=A D+B C$. There exists a point P inside the quadrilateral at a distance h from the line $C D$ such that $A P=h+A D$ and $B P=h+B C$. Show that:

$$
\frac{1}{\sqrt{h}} \geq \frac{1}{\sqrt{A D}}+\frac{1}{\sqrt{B C}}
$$

5. Prove that for each positive integer n there exist n consecutive positive integers none of which is an integral power of a prime number.
6. A permutation $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ of the set $\{1,2, \ldots, 2 n\}$, where n is a positive integer, is said to have property P if $\left|x_{i}-x_{i+1}\right|=n$ for at least one i in $\{1,2, \ldots, 2 n-1\}$. Show that, for each n, there are more permutations with property P than without.
