30th International Mathematical Olympiad Braunschweig, Germany Day I

- 1. Prove that the set $\{1, 2, ..., 1989\}$ can be expressed as the disjoint union of subsets A_i (i = 1, 2, ..., 117) such that:
 - (i) Each A_i contains 17 elements;
 - (ii) The sum of all the elements in each A_i is the same.
- 2. In an acute-angled triangle ABC the internal bisector of angle A meets the circumcircle of the triangle again at A_1 . Points B_1 and C_1 are defined similarly. Let A_0 be the point of intersection of the line AA_1 with the external bisectors of angles B and C. Points B_0 and C_0 are defined similarly. Prove that:
 - (i) The area of the triangle $A_0B_0C_0$ is twice the area of the hexagon $AC_1BA_1CB_1$.
 - (ii) The area of the triangle $A_0B_0C_0$ is at least four times the area of the triangle ABC.
- 3. Let n and k be positive integers and let S be a set of n points in the plane such that
 - (i) No three points of S are collinear, and
 - (ii) For any point P of S there are at least k points of S equidistant from P.

Prove that:

$$k < \frac{1}{2} + \sqrt{2n}.$$

30th International Mathematical Olympiad Braunschweig, Germany Day II

4. Let ABCD be a convex quadrilateral such that the sides AB, AD, BC satisfy AB = AD + BC. There exists a point P inside the quadrilateral at a distance h from the line CD such that AP = h + AD and BP = h + BC. Show that:

$$\frac{1}{\sqrt{h}} \ge \frac{1}{\sqrt{AD}} + \frac{1}{\sqrt{BC}}.$$

- 5. Prove that for each positive integer n there exist n consecutive positive integers none of which is an integral power of a prime number.
- 6. A permutation (x_1, x_2, \ldots, x_m) of the set $\{1, 2, \ldots, 2n\}$, where *n* is a positive integer, is said to have property *P* if $|x_i x_{i+1}| = n$ for at least one *i* in $\{1, 2, \ldots, 2n 1\}$. Show that, for each *n*, there are more permutations with property *P* than without.